
i

ZEN
and the art of

Railway Maintenance

Analysis and Optimization of Maintenance via
Fault Trees and Statistical Model Checking

Enno Ruijters

Zen and the art of railway maintenance
Analysis and optimization of maintenance

via fault trees and statistical model checking

Enno Ruijters

Graduation Committee:
Chairman: prof. dr. J. N. Kok
Promotors: prof. dr. M. I. A. Stoelinga

prof. dr. ir. J.-P. Katoen

Members:
prof. dr. ir. T. Tinga University of Twente
dr. ir. P.-T. de Boer University of Twente
prof. dr. K. G. Larsen Aalborg University, Denmark
prof. dr. ir. P. H. A. J. M. van Gelder Delft University of Technology
prof. dr. J. Křetínský Technical University Munich, Germany
dr. A. Cimatti Fondazione Bruno Kessler, Italy

Referee:
ing. M. van Noort ProRail

DIGITAL

SOCIETY

INSTITUTE

IDS Ph.D. Thesis Series No. 18-460
Institute on Digital Society
P.O. Box 217,
7500 AE Enschede, The Netherlands

IPA Dissertation Series no. 2018-10
Work in this thesis has been carried out under the auspices of
the research school IPA (Institute for Programming research and
Algorithmics).

Stichting voor de Technische Wetenschappen
The work in this thesis was supported by the ArRangeer project
(smArt RAilroad maintenance eNGinEERing), funded by the STW-
ProRail partnership program ExploRail under the project grant
122238.

ISBN: 978-90-365-4522-8
ISSN: 2589-4730 (IDS Ph.D. Thesis Series)
DOI: 10.3990/1.9789036545228
Available online at https://doi.org/10.3990/1.9789036545228

Typeset with LATEX
Printed by Ipskamp Drukkers Enschede
Top cover image © 2016 NS Groep N.V.
Copyright © 2018 Enno Ruijters

https://doi.org/10.3990/1.9789036545228
https://doi.org/10.3990/1.9789036545228

Zen and the art of railway maintenance
Analysis and optimization of maintenance via fault trees and

statistical model checking

Dissertation

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus
Prof. dr. T. T. M. Palstra

on account of the decision of the gratuation committee,
to be publicly defended

on Friday 25rd of May 2018 at 16:45

by

Enno Jozef Johannes Ruijters

Born on 2nd of February 1990
in Brunssum, The Netherlands

This dissertation has been approved by:

Prof. dr. ir. J.-P. Katoen (promotor)
Prof. dr. M. I. A. Stoelinga (promotor)

Abstract
Maintenance is crucial for the operation of modern systems. Timely inspections,
repairs, and replacements help to prevent costly failures and downtime, and ensure
that systems continue to function properly and safely.

At the same time, this maintenance is costly. It requires staff, spare parts,
and often downtime while inspections or repairs are being performed. Too much
maintenance means wasting money, reducing the overall usefulness of the system,
and even risking accidents due to improper maintenance. It is therefore important
to find a good maintenance policy that balances cost and dependability.

To achieve this balance, one must understand how a system wears out over time,
and what the effects are of various actions to remove or prevent this wear. This
thesis presents fault maintenance trees (FMTs), a novel formalism to allow the
quantitative analysis of the effects of maintenance on costs and system dependability,
to support the analysis and improvement of maintenance policies.

FMTs are based on the industry-standard formalism of fault trees (FTs), which
have long been used to study the reliability of safety-critical systems such as nuclear
power plants and airplanes. FTs have been used since the 1960s, and a wide range
of extensions and variants have been developed. These support the analysis of
systems with time-dependent failures, uncertainty of failure probabilities, and
various other properties. The first part of this thesis provides an overview of the
jungle of fault tree extensions, surveying over 150 papers on the topic.

The second part of this thesis introduces FMTs, which augment fault trees by
including maintenance actions such as inspections and component replacements.
With this information, we can calculate the probability of a system failure given a
specific maintenance plan. FMTs also include information about the costs of dif-
ferent maintenance actions and failures, allowing one to calculate the expected total
costs for a given policy. Thus, FMTs allow the comparison of different maintenance
policies with respect to their effects on system reliability and cost, supporting the
choice of the policy that best balances the two.

Technically, FMTs are analysed using statistical model checking (SMC), a state-
of-the-art technique to analyse complex systems without the excessive memory
requirements of many other analysis techniques for extended FTs. SMC allows us
to compute statistically justified confidence intervals on quantitative metrics such
as cost, system reliability, and expected number of failures over time.

SMC works well for many systems, but has a drawback that is particularly
noticeable in our setting: Accurate estimates of low probabilities can take a long
time to compute. We therefore provide a second analysis technique based on the
recently developed Path-ZVA algorithm for rare event simulation. While this
technique is currently limited to computing the average system availability, it
requires much less computation time than SMC does for high-availability systems,
without losing the statistical guarantees that SMC provides.

v

Finally, we want FMTs to be applicable in a practical setting. To this end,
the third part of this thesis presents two case studies from the railway industry:
an electrically insulated railway joint, and a pneumatic compressor. These case
studies were performed in close collaboration with our industrial partners, and
demonstrate that FMTs can accurately model real-life systems and maintenance
policies, and provide insights to help improve maintenance plans.

vi

Acknowledgements
This thesis is the culmination of my four-year PhD journey, and I would like to
extend my gratitude to some of the people who have made this work possible. I
particularly thank my supervisors Mariëlle Stoelinga and Joost-Pieter Katoen, and
my research coach at ProRail, Martijn van Noort.

Mariëlle, as my daily supervisor, you have kept me on track and guided me
through this period. Thank you for the thoughtful discussions and advice along
the way. Your suggestions for improving my presentations and papers have been
very helpful, and are reflected throughout this thesis.

Joost-Pieter, you were the one who originally pointed me to the open PhD
position in Twente, and as my promotor we have had several fruitful discussions
about my progress and future direction. The visits to your chair in Aachen were
always a helpful source of inspiration and research ideas.

Martijn, you took on the job of research coach some time after the project
had started, and you were instrumental in leading us to practical application of
the theory we were developing. You provided information on case studies and
organised meetings with subject experts, which shaped our research and always
showed points of improvement.

I greatly enjoyed my time working at the Formal Methods & Tools group in
Twente. The diversity of people and subjects here broadened my horizons, and
our weekly lunch colloquia taught me about matters I would not have explored
otherwise. I thank the people I shared an office with, Dennis, Waheed, Marcus,
Rajesh, Buǧra, Carlos, and Arnaud, for always being available for discussions.
Dennis, since you worked on the same project as me, particular thanks to you for
our discussions on fault trees, maintenance, and Markov automata. Carlos and
Arnaud, you have started working where I left off on the successor of my project,
thanks for helping me clarify some aspects I hadn’t considered. Sebastian, who
visited us at FMT for a few months, thank you for the interesting discussions on the
semantics of DFTs, these helped me avoid some of their issues in fault maintenance
trees. Finally, thanks to all the FMT members for the pleasant atmosphere and
enjoyable discussions over lunch, tea breaks, and paper-cakes.

In the last year of my PhD, I spent several months at the Fondazione Bruno
Kessler in Trento, Italy as a research internship. Thanks to Alessandro for making
this possible, and for the fruitful discussions on my research while there. Thanks
also to Marco and both Chiara’s for the meetings on the case study, which helped
put everything into perspective and provided inspiration for a similar project in
Twente. Thanks to Gianni for the help in understanding the extensive toolchain.
Furthermore, thanks to all the members of Alessandro’s group at FBK for the
enjoyable discussions over lunch and in the breaks.

One of the great benefits of being a PhD student is the opportunity to attend
conferences and summer schools. Particularly memorable were the EATCS summer

vii

school in Telç, the Marktoberdorf summer school, and the RAMS conference. The
discussions and presentations at these and other events were a lot of fun, and a
boundless source of ideas and inspiration for collaboration.

I was fortunate in my PhD to be able to collaborate with various partners in
the railway sector, which has made my research more practically applicable and
often demonstrated places where theoretical assumptions conflict with realistic
practices. Thanks to all the people who worked with me on the case studies and
other collaborations. Particular thanks to Judi Romijn and Gea Kolk at Movares,
who provided help throughout the project and particularly on the EI-Joint case
study. Thanks, also, to Peter Drolenga, Margot Peters, and Bob Huisman at
NedTrain for their collaboration on the compressor case study.

Thanks to all the members of my committee for approving my thesis, and
thanks for the helpful comments about further improvements.

Ten slotte wil ik mijn familie en vrienden bedanken voor hun steun en aan-
moediging. Pap, mijn eerste ervaringen met computers waren met jou op je werk,
en hiermee is het pad begonnen dat naar dit proefschrift heeft geleid. Suus, bedankt
voor al je goede zorgen in de weekenden die ik in Oirsbeek heb doorgebracht. Niek
en Gijs-Jan, bedankt voor de samenwerking in CodePoKE tijdens mijn studie in
Maastricht, en voor de game-dagen daarna.

viii

Contents

Abstract v

Acknowledgements viii

1 Introduction 1
1.1 Reliability analysis . 2
1.2 Maintenance . 4
1.3 Fault Tree Analysis . 7
1.4 Fault Maintenance Trees . 9
1.5 Statistical Model Checking . 12
1.6 Problem Description . 14
1.7 Main contributions . 16
1.8 Thesis outline . 17

I Fault trees 19

2 Introduction to fault trees 21
2.1 Related work . 25

2.1.1 Legal background . 26
2.2 Static fault trees . 27

2.2.1 Fault Tree Structure . 27
2.2.2 Formal definition . 29
2.2.3 Semantics . 30

2.3 Qualitative analysis . 31
2.3.1 Minimal cut sets . 32
2.3.2 Minimal path sets . 41
2.3.3 Common cause failures . 42

2.4 Quantitative analysis: Single-time 42
2.4.1 BE failure probabilities . 44
2.4.2 Reliability . 45

ix

2.4.3 Expected Number of Failures 52
2.5 Quantitative analysis: Continuous-time 52

2.5.1 BE failure probabilities . 53
2.5.2 Reliability . 54
2.5.3 Availability . 55
2.5.4 Mean Time To Failure . 56
2.5.5 Mean Time Between Failures 58
2.5.6 Expected Number of Failures 58
2.5.7 Sensitivity analysis . 59

2.6 Importance measures . 59
2.7 Tool support . 62

2.7.1 Commercial tools . 62
2.8 Conclusion . 64

3 Dynamic Fault Trees 67
3.1 Structure . 70
3.2 Qualitative analysis . 72
3.3 Quantitative analysis . 74

3.3.1 Algebraic analysis . 75
3.3.2 Analysis by Markov Chains 76
3.3.3 Analysis using Dynamic Bayesian Networks 79
3.3.4 Other approaches . 81
3.3.5 Simulation . 81

3.4 Conclusions . 82

4 Fault tree extensions 83
4.1 FTA with fuzzy numbers . 85

4.1.1 Importance measures for fault trees with fuzzy numbers . . 87
4.1.2 Analysis methods measures for fault trees with fuzzy numbers 88

4.2 Fault Trees with dependent events 88
4.3 Repairable Fault Trees . 90

4.3.1 Analysis . 92
4.4 Fault trees with temporal requirements 93
4.5 State-Event Fault Trees . 94
4.6 Miscellaneous FT extensions . 96
4.7 Comparison . 96
4.8 Conclusion . 97

x

II Integrating maintenance into fault trees 99

5 Fault maintenance trees 101
5.1 Maintenance concepts . 103
5.2 Fault tree modeling . 105

5.2.1 Basic events . 106
5.2.2 Gates . 106
5.2.3 Rate dependencies . 109
5.2.4 Formal definition . 110

5.3 Maintenance modeling . 112
5.4 Costs . 114
5.5 FMT analysis via statistical model checking 115

5.5.1 Metrics . 117
5.5.2 Unified analysis via model-driven engineering 120

5.6 Conclusion . 124

6 Analysis via importance sampling 127
6.1 Rare Event Simulation . 129

6.1.1 Change of Measure . 134
6.1.2 The Path-ZVA Algorithm 136

6.2 Fault Maintenance Trees . 139
6.2.1 Dynamic and Repairable Fault Trees 140
6.2.2 Compositional Semantics 140
6.2.3 Reducing I/O-IMCs to Markov Chains 142

6.3 Methodology . 144
6.4 Case Studies and Results . 146

6.4.1 Railway Cabinets . 147
6.4.2 Fault-Tolerant Parallel Processor 149
6.4.3 Hypothetical Example Computer System 150
6.4.4 Analysis results . 151

6.5 Conclusion . 152

III Case studies 155

7 FMTs in practice: Analysis of the electrically insulated joint 157
7.1 Case description . 160

7.1.1 Joint construction . 161
7.1.2 Failure modes . 162
7.1.3 Inspections and repairs . 166
7.1.4 NRG-Joint . 166

7.2 Approach . 167

xi

7.2.1 Qualitative modelling . 169
7.2.2 Quantitative modelling . 170
7.2.3 Metrics . 171
7.2.4 Validation . 172

7.3 Analysis and results . 172
7.3.1 Reference policy . 173
7.3.2 Optimisation of maintenance policy 175
7.3.3 Comparison to new joint model 178
7.3.4 Modelling power of FMTs 178

7.4 Conclusion . 179
7.4.1 Conclusions on EI-joints . 179

8 FMTs in practice: Analysis of the pneumatic compressor 181
8.1 Case description . 183

8.1.1 Purpose and operation . 185
8.1.2 Maintenance . 191

8.2 Approach . 192
8.2.1 Qualitative modelling . 194
8.2.2 Quantitative modelling . 194
8.2.3 Metrics . 195
8.2.4 Validation . 195

8.3 Analysis and results . 196
8.4 Conclusion . 199

8.4.1 Conclusions on the compressor 199

IV Conclusions 201

9 Conclusions 203
9.1 Contributions . 203
9.2 Discussion and Future Work . 204
9.3 Outlook . 206

References 206

V Appendices 241

A Questionnaire on EI-joint 243

B Numerical data used for plots 247

Publications by the author 251

xii

Samenvatting 257

xiii

xiv

Chapter 1

Introduction

Maintenance is crucial for the cost-effective operation of modern systems. In the
automotive industry, for example, a recent estimate concluded that one minute
of downtime costs $22,000 on average [VG06]. The annual cost of unplanned
downtime in the manufacturing industry is as high as $50 billion, with 42% of this
being caused by equipment failure [Eme16].

Furthermore, maintenance can be safety-critical: Nobody would board an
airplane without confidence that it has been properly maintained. In fact, the
U.S. National Transportation Safety Board has identified at least 1,503 aviation
accidents between 1988 and 1997 caused by insufficient or improper maintenance
[GFK02], resulting in 504 deaths. Proper maintenance is thus clearly essential for
safety-critical systems.

While crucial, all this maintenance is also very costly. Staff has to be paid,
replacement parts bought, and systems shut down for maintenance. In Finland,
maintenance costs make up about 5.5% of manufacturing companies’ turnover
[Kom02], with some companies spending as much as 25% of their turnover on
maintenance. The goal, then, is to balance the cost of maintenance against the
effects of failures.

In some cases, this balance is externally imposed: In the aviation industry,
for example, the U.S. Federal Aviation Administration sets rules for the periodic
inspections of aircraft (annual and 100-hour inspections, in additional to the
manufacturer’s maintenance manual) [FAA18]. In many cases, however, asset
managers can decide for themselves how much maintenance is worth.

Making a well-informed decision about when to apply what maintenance requires
a thorough understanding of the effects of such maintenance. This is the topic of
this thesis: We present methods to analyse systems subject to maintenance, in
terms of:

1. performance, by computing various metrics of the system dependability, such
as availability, reliability, and expected number of failures over time, and

2. cost, by estimating the cost of both maintenance and downtime, each of
which can be broken down into the costs of different maintenance actions
and per-component failure costs.

1

This allows one to optimise the maintenance policy, focusing effort and cost on
those parts of the system where they are most effective, thereby saving costs and/or
improving reliability.

1.1 Reliability analysis
Reliability, as a general term, is defined as the state of being reliable, i.e., that
something can be relied upon. Making this term more formal, we find that
“reliability is the ability of a product of system to perform its intended for a specified
time, in its life cycle conditions” [KP14]. The goal is reliability engineering, then,
is to design and operate systems in such a way that they meet their requirements
for reliability.

We can see the field of reliability engineering somewhat broader than only
looking at reliability, and include other key performance indicators of system
dependability. The most important ones are the so-called RAMS metrics [KP14]:
reliability, availability, maintainability, and safety. Following [ALRL04], these are
defined as:

• Reliability: Continuity of correct service.

• Availability: Readiness of correct service.

• Maintainability: Ability to be modified and repaired.

• Safety: Absence of events that are catastrophic for the user and environment.

Depending on the system and environment, other key performance indicators
can also be important for dependability. Systems subject to malicious attackers,
for example, should also meet requirements for integrity (the absence of improper
system alterations [ALRL04]). Other extensions include the RAMSSHEEP aspects,
extending RAMS with security, health, environment, economics, and politics
[Rij12, WvG14].

Having established the dependability requirements for a system, it is necessary to
plan how to meet these requirements. This begins at the design stage: appropriate
use of high-quality components and design patterns such as redundancy help ensure
reliability. The design should also already consider the operational requirements
of the system, facilitating ease of maintenance, selecting components to reduce
logistics requirements, etc. [RG12].

For short-lived products, reliability engineering typically ends once the product
has been developed. For longer-lives assets, more work is required: Throughout
the operational life of the system, one can continue to ensure its reliability, e.g. by
monitoring its performance, making slight changes to the design, and scheduling
maintenance as required.

2

Plan

Do

Check

Act

Plan

Do

Check

Act

Plan

Do

Check

Act

...

Figure 1.1: Three iterations of the plan–do–check–act cycle

PDCA cycle. After a system is designed and produced, it typically needs to
be maintained. The topic of this thesis is the planning of such maintenance, to
avoid unnecessary maintenance but still ensuring high reliability. In practice,
the maintenance policy of long-lived systems often needs to evolve over time, as
components start wearing out and new insights are gained into how the system
behaves.

A popular framework for continuous improvement in product development and
risk management, also used to keep the maintenance policy up to date, is the
plan–do–check–act (PDCA) cycle, also called the Deming cycle [Dem86], illustrated
in Figure 1.1. Looking specifically at maintenance, the cycle is a guideline for how
to achieve continuous improvements to the maintenance planning. It consists of
four steps:

• Plan: Develop a maintenance policy that will ensure that the system meets
its dependability requirements.

• Do: Carry out the maintenance policy as planned.

• Check: Gather data about the maintenance performed and its effects. Iden-
tify any unexpected problems or situations.

• Act: If the gathered data confirms that the newly planned policy is an
improvement, it now becomes the new standard policy. Otherwise, the old
policy remains the standard. Either way, any unexpected information learned
in the Check phase should be included in the Plan phase of the next cycle.

This cycle is repeated every time new information suggests a change to the
maintenance policy. Examples include components wearing out faster than expected,
design changes, or changes in costs shifting the optimal balance between preventive
and corrective maintenance.

Continuous application of the PDCA cycle ensure that new maintenance policies
are only implemented when their effectiveness is supported by data, while allowing
new insights to be incorporated into the maintenance plan.

3

Reliability analysis. In order to decide what, if any, improvements should be
made to a system to increase its dependability, one needs to analyse the system to
assess its RAMS characteristics. Apart from highly system-dependent analyses (e.g.,
[Bor12] on the reliability of energy distribution grids), a number of widely-applicable
techniques have been developed.

The method used in this thesis is fault tree analysis, which will be described in
detail later. A complementary method is the failure modes and effects analysis
(FMEA) [RH04, IEC06a]. This is a spreadsheet-based method, which works by
listing all the various failure modes of the system’s components, and identifying the
effects of each failure mode in isolation. It is a relatively simple method to quickly
identify potential dependability problems. It is also one of the oldest methods for
reliability analysis, with the U.S. military standard dating back to 1949 [U.S49].

A brief overview of popular alternative reliability estimation methods is provided
in Section 2.1. On the one hand, these include more structured spreadsheet-based
methods such as the HAZard an OPerability study (HAZOP) [Kle99], popular in
industrial fields such as the chemistry sector. On the other hand, there are highly
detailed techniques for specifying the system behaviour, such as the Architecture
Analysis and Design Language (AADL) [Soc17, FG12] from which failure modes
can be automatically derived and, with sufficient quantitative information, the
system dependability can be computed [BCK+11].

1.2 Maintenance
As mentioned earlier, maintenance is crucial to the continued functioning of most
systems. From simple tasks like regularly replacing the batteries in your smoke
detectors to long and complex overhauls of entire power plants, systems that go
unmaintained tend to break down over time. It is therefore important to understand
what maintenance is necessary to keep the system running smoothly.

At the same time, too much maintenance is expensive and can actually reduce
the functionality of the system. If you have your car inspected every day, it
will probably run for decades without problems. It will also rarely be used to
actually fulfil its purpose, rather than constantly being in a garage. In extreme
cases, maintenance can even cause safety issues, as demonstrated when an airplane
crashed due to adhesive tape left blocking its sensors after maintenance [WS00].
Thus, the key to a good maintenance strategy is to find a plan that balances these
downsides against the improved reliability.

In this thesis, we consider maintenance to be the actions taken in order to keep
a system in working condition, or restore a failed system to its working condition.
This include actions (such as inspections) that have no direct effect on the system
condition, but are performed as part of an overall strategy to improve or maintain
the condition.

4

One of the key questions when planning maintenance is to determine the
optimal time to do it [Ebe97]. Broadly speaking, the timing can be divided into
failure-based, use-based, and condition-based schedules [Git92]. A fourth strategy,
opportunity-based maintenance, can be combined with the other schedules [Van91].

• A Failure-based strategy is simply to wait for a component to fail and
then replace it. Such a run-to-failure strategy works best on components
that either cannot be helped be earlier maintenance (e.g., replacing an intact
window will not keep it from getting broken later) or for which failures are
not expensive compared to maintenance (e.g., replacing a close-to-failing light
bulb is generally no cheaper than replacing it once it has failed).
If waiting for failures is not an option, due to cost or other requirements,
some form of preventive maintenance is required. Such maintenance will
typically follow one of the schedules below.

• Use-based schedules apply preventive maintenance after some measure of
use of the system has been reached. An example of this is the common advice
to replace the batteries in your smoke detector once per year, so they never
get too close to empty. Slightly more advanced policies base their timing on
the actual use of the system, such as oil changes for cars being performed
after a certain number of miles driven.

• Condition-based schedules are the most advanced maintenance schedules.
Here, the current condition of the components is determined in some way
(e.g., by inspections or sensors), and maintenance plans are decided taking
this into account. A component in very good condition may simply be left
untouched for some time, while a component is poor condition is preventively
replaced.

• Opportunity-based maintenance is sometimes combined with the other
maintenance plans [Van91]. Here, one takes advantage of downtime due
to other causes (e.g., other planned or unplanned maintenance) to perform
preventive maintenance. For example, when a tire on your car has worn out,
it can be more efficient to replace any other worn tires rather than use them
a few more weeks.

Recently, so-called predictive maintenance has become a popular approach to
maintenance planning. This is a particular case of condition-based maintenance,
where the current (and sometimes historical) state of the system is used to predict
the future behaviour, and maintenance is scheduled to prevent any predicted
failures. This kind of planning requires a detailed insight into how the components
degrade over time, but allows one to achieve very high reliability with minimal
unnecessary maintenance.

5

The key to deciding between these strategies, and to determine an optimal plan
within a strategy, is a good understanding of how your system wears out over time,
what the effects are of the possible maintenance actions, and what information
is available to base decisions on. With this information, one can determine what
actions give the greatest benefit (e.g., replacement or partial repair), what metrics
best indicates when to take these actions (e.g., time, use, or sensor data), and what
values of these metrics indicates the best time to take action.

The approach we provide to gain this understanding is to integrate the effects
of maintenance into the well-established reliability engineering formalism of fault
tree analysis [VGRH81, RS15] (see Section 1.3).

Maintenance optimisation. The problem of deciding of what maintenance
planning is optimal has been studied since the early 1950s and ’60s [May60, Dek96].
At this time, most of the work focused on the estimation of the probability
distributions of failure times of various components, and the derivation of optimal
replacement schedules based on these distributions [BP75].

A drawback of the early work is that it mostly treats components in isolation,
and finding an optimal policy for maintaining systems of heterogeneous components
with different failure time distributions is considerably more complex. Dekker et al.
[DWvdDS97] identify three types of dependencies in multi-component maintenance:

• Economic dependence, where maintenance costs can be reduced by simulta-
neously maintaining multiple components.

• Structural dependence, where the system structure dictates that multiple
components are maintained at once. For example, many electronic systems
have circuit boards that are usually replaced in their entirety, rather than
replacing individual components on the board.

• Stochastic dependence, where the failure of one component provides infor-
mation about the remaining lifetime of other components.

Surveys of maintenance models for multi-component systems can be found in
[DWvdDS97] (focusing on economic dependence) and [CP91]. We note that the
fault maintenance trees discussed in this thesis model all three types of dependencies,
as its fault tree includes stochastic dependencies, and its inspection and repair
models can affect multiple components at the same time.

More recently, approaches have been developed that can treat larger systems (i.e.,
with more component or complex policies), at the expense of not producing exact
optima [SyD11]. An example is the application of genetic algorithms to optimal
policies for opportunity-based maintenance [SWK95a, SWK95b]. This thesis does
not present an optimisation method per se, but rather an analysis method that can
be used within such an optimisation. In particular, many optimisation methods

6

contain a model of the degradation and failure behaviour of the system under study,
and a parameterized model of the maintenance policy, and then use methods such
as genetic algorithms [MZ00] or integer-linear programming [BHD06] to optimise
the parameters of the maintenance policy. In this context, FMTs can be used as
the model of both the system and the maintenance, provided the optimisation
method can tolerate the statistical nature of FMT analysis.

One of the benefits of FMTs is the generality of the framework: Much existing
work demonstrates models to optimise maintenance policies for specific settings,
e.g.[PA13] for railways, with no clear way to apply the models to other settings. In
contrast, FMTs provide a general approach by which models for particular settings
can be constructed. Just as standard fault trees have been applied to many different
industries, we hypothesise that FMTs can also be applied in different fields.

It has been shown that such external effects, such as usage profile and external
temperature, are the dominant cause of variation in the degradation rate of many
components [Tin10]. Thus, monitoring of such influences can provide better
maintenance policies than simple time-based maintenance, and simulation of these
effects with otherwise-deterministic degradation models has been shown effective
in maintenance optimisation [TJ13]. FMTs provide some support for such external
factors through the RDEP gate, but mostly rely on their inclusion in the probability
distributions of the degradation rates. This is most applicable when, as in our case
studies, the environment and usage are relatively static over the system’s lifetime,
and uncertainty in the actual degradation behaviour causes more variation than
external factors.

Apart from the maintenance policy itself, various other factors need to be
considered in ensuring effective maintenance. These include the management of
a (spare) parts inventory [CP91], personnel [PG92], and documentation [Eas84].
These factors are beyond the scope of this thesis, although dynamic fault trees
(Chapter 3) can provide some insight into spare parts management [DBB90].

A very important aspect of maintenance optimisation is that it must be appli-
cable in practice. Several reviews [ND08, Dek95] concluded that case studies are
not well-represented in the literature. One comment [Sca97] is that maintenance
modellers should collaborate with maintenance engineers to ensure that the models
are applicable to real-world systems. To that end, the case studies described in
Chapters 7 and 8 were developed in close collaboration with partners from the
railway industry, with the aim to ensure that FMTs can provide an accurate model
of realistic systems and maintenance policies.

1.3 Fault Tree Analysis
Fault trees (FTs) are an industry-standard [ISO11], graphical modelling approach to
describe how failures propagate through the system, i.e., how failures of components

7

interact to cause failures of the overall system [RS15]. By connecting subsystems
using boolean connectors (e.g., OR), common patterns such as redundancy of
components and subsystems can be expressed. The resulting models can be
analysed to obtain various qualitative and quantitative dependability metrics.

They were developed in the 1960s to evaluate the reliability of a missile launch
system [Eri99], and were quickly picked up by Boeing as a tool for reliability engi-
neering of their safety-critical systems [Hix68]. Since then, they have been adopted
by many other companies, and have become standardised by, e.g., the International
Electrotechnical Commission [IEC06b] and ISO [ISO11]. In some fields, the use of
fault tree analysis is specified by regulators, such as the U. S. Nuclear Regulatory
Commission [VGRH81] and the Federal Aviation Administration [FAA00].

Fault trees are constructed by starting with an undesired event (called the
top (level) event), and identifying the immediate requirements for this event to
occur. Each of these requirements is further refined into its own causes, and so on,
until the identified causes are sufficiently fine-grained that they do not need to be
further refined. These final causes are the leaves of the tree, also called the basic
events. The intermediate events use boolean connectors, or gates, to describe the
interactions between failures of subsystems.

Example 1 An example of a fault tree is shown in Figure 1.2. The top event
here is ‘Loss of cooling’, which is refined into two possible causes: ‘No coolant
flow’ and ‘Loss of coolant’. Since either cause leads to a loss of cooling, these
are connected by the OR-gate at the top. The event ‘Loss of coolant’ is refined
into basic events 5 and 6, namely ‘Coolant leak’ and ‘Valve stuck closed’. Again,
there are connected by an OR-gate. The event ‘No coolant flow’ is modelled by
and AND-gate requiring the loss of both the main and emergency pumps. Both
of these pumps can fail independently, either by failure of the motor or loss of
power.

Once a system has been modelled using a fault tree, this tree can be analysed
for various qualitative and quantitative metrics. Qualitatively, the most common
analysis is to determine cut sets: combinations of component failures leading to
system failure. For example, from Figure 1.2 one can see that the event ‘Coolant
leak’ is sufficient to cause a loss of cooling. Such a single point of failure often
points to weak points in the design that need to be addressed. Quantitatively, one
can decorate the basic events with their probabilities of occurring, and compute
the probability of the undesired event. In this way, one can demonstrate that the
system meets dependability requirements. Alternatively, if the system does not
meet requirements, various importance measures can be computed that identify
which parts of the system have the largest impact on the dependability, which
helps to determine the best way to improve it.

Overall, fault tree analysis can be applied to achieve a variety of goals:

8

Loss of cooling

No coolant flow Loss of coolant

Main
pump failure

Emergency
pump failure

1 2 3 4

5 6

Basic events:
1: Pump motor failure
2: Electrical power lost
3: Pump motor failure
4: Diesel generator failure
5: Coolant leak
6: Value stuck closed

Figure 1.2: Fault tree of a hypothetical coolant system.

• Explain the structure of a system with respect to its dependability, helping to
understand the overall failure behaviour of the system (e.g., using cut sets).

• Demonstrate compliance with regulations on the dependability of safety-
critical systems (e.g., using quantitative analysis).

• Identify parts of a system where improvements in reliability have the greatest
impact on overall system dependability (e.g., using importance measures).

• If a failure has occurred, and information is available about which parts of
the system are definitely (not) functioning, identify the most likely causes of
the failure (e.g., [HBA08], not discussed in this thesis).

Over the years, a wide range of extensions and variants of fault trees have been
developed, which can better handle aspects such as uncertainties, dependencies
between components, and repairs. An overview of these extensions is provided in
Part I of this thesis.

1.4 Fault Maintenance Trees
While fault trees are widely to analyse system designs, and have been extended
to cover some simple policies for repairs [FMIM05, BCRFH08], the impact of

9

maintenance on system dependability has traditionally not been included in fault
tree analysis. The main topic of this thesis is the development of Fault maintenance
trees, augmenting fault trees with powerful models for maintenance policies. This
allows quantitative analysis of the effects of maintenance on costs and system
performance, supporting the development of better maintenance plans.

Fault maintenance trees extend classic fault trees in three main ways: First,
basic events are more detailed, containing models of how components degrade
over time. Second, relationships between the degradation of different components
are explicitly modelled using a new gate (the RDEP, or rate-dependency). This
gate models the situation where a failure of one component or subsystem places
increased stress on another component, accelerating that component’s wear. Finally,
inspection and repair modules are used to model detailed repair policies specifying
what inspections are performed when, and what actions are taken depending on
the result of the inspection. Repair modules can repair multiple components at
once, thereby modelling potential cost reductions by clustering maintenance actions
[dJKTT16].

Considering the maintenance policies described in Section 1.2, FMTs allow the
specification of both preventive and corrective maintenance actions. We support
failure-based, time-based, and condition-based maintenance, with the caveat that
all maintenance actions must be specified in terms of time. If a use-based policy
is needed, this must be converted to a time-based one, e.g. using information
about the system’s average use over time. Opportunity-based maintenance is
partially supported, as repair modules can specify that multiple components are
replaced at the same time, but such opportunistic replacements cannot be condition-
based (although we expect that extending FMTs to include condition-dependent
replacements would not be difficult).

Example 2 Figure 1.3 shows part of a fault maintenance tree of a compressor.
Just like in a normal fault tree, the top event is a gate (an OR-gate, in this case)
describing that any of the child events is sufficient to cause a failure. A new
addition is the RDEP gate describing the effects of oil pollution, namely that this
causes accelerated wear of the bearings and screws (by a factor of three and two,
respectively). Also new are the inspection module ℐ and repair modules ℛ1 and
ℛ2, where ℛ2 specifies that the bearings, screws, and oil are repaired when the
compressor fails, while ℐ and ℛ1 specify that the air filter is periodically inspected
and, if necessary, replaced.

The key benefit of fault maintenance trees is their ability to model the effects
of different maintenance policies on system performance and cost. Quantitative
analysis can compute the probability of system failure, the expected number of
failures over time, and the expected numbers of each maintenance action performed.
By assigning costs to failures, downtime, inspections, and repairs, one can compute
the expected total cost of the system under a given policy. By varying this policy,

10

Insufficient compressor capacity

Bearings
worn

Screws
worn

Air filter
blocked

Oil polluted

RDEP

×3 ×2

ℛ2

ℛ1

ℐ

Figure 1.3: Example of a fault maintenance tree

FMTs allow the optimisation of the maintenance plan to find, e.g., the cheapest
strategy that meets reliability requirements, or the strategy that offers the best
performance within a given budget.

An important element of accurate modelling of the system, is the decision of
which probability distributions to use for the degradation rates of the components.
This has been shown to have a major impact on the optimal maintenance policy
and the total maintenance cost [dJKTT15]. FMTs support arbitrary probability
distributions, allowing modellers to choose the most appropriate one, or experiment
with different distributions to examine how much the choice impacts the results.

Chapters 7 and 8 show how FMTs can be applied to practical systems, in this
case from the railway industry, to calculate the cost-optimal number of inspections
to perform per year, and to find maintenance actions whose costs outweigh their
benefits.

Analysis. This thesis provides two methods for analysing FMTs: First, Chapter
5 describes an analysis via statistical model checking [BDL+12]. This is a state-
of-the-art approach using Monte Carlo simulation to achieve statistically sound
conclusions about a wide range of dependability metrics, such as the expected cost
or system reliability.

One drawback of statistical model checking is particularly noticeable when
analysing highly reliable systems: The computation time needed to obtain an

11

1

ℐ

ℛ
2

3

checker
M

odel

Metric

4 0 2 4 6 8
Nr. of inspections per year

C
os
t

Total cost
Cost of inspections
Cost of prev. and corr. maint.
Cost of failures

0 2 4 6 8 10
Year

C
um

ul
at
iv
e
fa
ilu

re
s

Figure 1.4: Overview of the steps of fault maintenance tree analysis.
The steps are: (1) construction of the FMT describing the system and its mainte-
nance policy, (2) translation of the FMT to a state-space model (stochastic timed
automata or Markov chain), (3) analysing the state-space model using a stochastic
model checker to compute the desired metric, and (4) interpreting the results of
the model checker to validate the model and optimise the maintenance policy.

accurate estimate increases as the probability being estimated decreases. In
reliability engineering, where failure probabilities are typically very small, this
computation time can grow impractically large.

Chapter 6 describes how FMTs can be analysed using rare event simulation
[KH51]. This technique modifies the system being analysed to make failure less rare,
estimates the failures probability of this modified system, then applies a correction
to the estimate to obtain a statistically sound estimate of the original probability.
Our approach currently only supports calculation of the system availability, but
can significantly reduce the computation time compared to the normal analysis by
statistical model checking.

Figure 1.4 illustrates the overall process of a fault maintenance tree analysis.

1.5 Statistical Model Checking
The basic concept of model checking is to verify whether some model of a system
satisfies a certain property. The term was introduced by Clarke and Emerson
[CE82] to describe the process by which a concurrent computer program was
verified to meet a property specified using temporal logic, and a similar process
was independently developed by Queille and Sifakis [QS82]. Clarke, Emerson, and
Sifakis were awarded the Turing award in 2007 for their work [CES09].

Originally, model checking was used to analyse systems with nondeterministic
choices (i.e., in which it was unspecified how such choices are made). The outcome
was a yes/no verdict whether the property is satisfied regardless of the choices
made, and if it is not, a counterexample showing how the property is violated.

Later work [CY88, HJ94] introduced probabilistic model checking, in which
choices are resolved using probabilities, forming a discrete-time Markov chain.
Model checking of continuous-time Markov chains, in which also the time taken in

12

𝑥 > 5
𝑥 := 0

𝑥 := 0
𝑥 > 2

Working
𝑥 ≤ 10

Down
𝑥 ≤ 5

(a) Timed automaton

𝑥 := 0

𝑥 > 2

Working
𝜆 = 7

Down
𝑥 ≤ 5

(b) Stochastic Timed automaton

Figure 1.5: Examples of (stochastic) timed automata.

each step is governed by an (exponential) probability distribution, followed several
years afterwards [BHHK03].

For such probabilistic or stochastic systems, we are no longer restricted to
checking qualitative properties, but we can also ask quantitative questions. For
example, we can ask “Is the probability of reaching a failed state within 10 years
less than 1%?” or “How often, on average, does the model enter a failed state per
year?”. Such questions are answered by stochastic model checking, and a variety of
stochastic model checking tools have been developed such as STORM [DJKV17],
PRISM [KNP11], and IscasMC [HLS+14].

Model checking for real-time systems was introduced in [AD94] with the formal-
ism of timed automata. Timed automata consist of locations, i.e., discrete control
states, and transitions, by which the model can move from one location to another.
Clocks are used to track the passage of time, with invariants on locations and
guards on transitions restricting when transitions may/must be taken.

Example 3 Figure 1.5a shows an example of a timed automaton. The automaton
begins in the location labelled ‘Working’ with clock 𝑥 equal to 0. The invariant
on this location specifies that some outgoing transition must be taken before 10
units of time have passed, while the guard on the top transition prevents it from
begin taken before time 5. Thus, at some time between 5 and 10 (the exact time
is nondeterministically chosen), the model moves to the location labelled ‘Down’.
The top transition also specifies that clock 𝑥 is reset when the transition is taken.
From this new location, between 2 and 5 time units elapse before the transition
back to ‘Working’ is taken, the system is back in its original state.

For the analysis of fault maintenance trees, we use the extended formalism of
stochastic timed automata (STAs). These extend timed automata by allowing
transition times to be governed by probability distributions rather than only
constraints on clocks. An example is shown in Figure 1.5b, where the top transition
is governed by an exponential distribution with mean time 7, rather than by a
nondeterministic transition time as in Figure 1.5a.

13

Analysis by statistical model checking. A common problem in the analysis
of complex systems using state space-based formalism such as STAs, is that the
number of locations grows too large to fit in computer memory. Various reduction
techniques (e.g., for fault trees specifically, [VJK18]) can help by reducing the
number of locations, but still run out of memory for larger systems. The analysis
of FMTs avoids this problem by using statistical model checking [BDL+12], which
requires very little memory, at the cost of providing only confidence intervals rather
than exact results.

Statistical model checking uses Monte Carlo simulation to estimate the prob-
ability that a run of the model satisfies the property of interest. To do so, we
randomly sample runs of the model, and count the number of runs that satisfy the
property and the number that don’t. We then apply a statistical hypothesis test to
compute a confidence interval for the probability of the property being satisfied, or
to give a qualitative result that (with a given confidence) the probability is above
or below a given threshold. An overview of various hypothesis tests for statistical
model checking can be found in [RdBSH15].

1.6 Problem Description
The research described in this thesis was carried out as part of the ArRangeer
project [UT12], itself part of the ExploRail program [SPN18].

This thesis presents part of the results of the ArRangeer project. The PhD
thesis of Dennis Guck [Guc17] describes the rest, covering more theoretical advances
in stochastic model checking and its use in the analysis of dynamic fault trees.

The goal of the ExploRail program is to reduce the vulnerability of the Dutch
railway system to disruptions. This program is made up of nine research project.
One of these projects is the ArRangeer project, which stands for Smart railroad
maintenance engineering with stochastic model checking. The aim of the ArRangeer
project was to extend fault trees with concepts from maintenance engineering, and
analyse the resulting model using stochastic model checking.

We can state the overall goal of our research project as:

Research goal: Develop an approach to quantitatively analyse the depend-
ability behaviour of a system under different maintenance policies, allowing the
comparison of these policies with respect to dependability and cost.

To achieve this goal, we formulate several research questions. First, we would
like to base our approach on existing methods for reliability engineering, To this
end, we need to examine what methods already exist and how useful they are to
our goal of including maintenance. This gives rise to our first research question:

14

Research question 1: What is the state-of-the-art in the quantitative analysis
of system dependability, and how extendable are current approaches to include
maintenance?

A brief literature search led us to decide on fault trees as the basis for our
approach. They are already an industry-standard tool for reliability analysis, and
a wide range of extensions has been developed (see Chapters 2–4). We found that,
while some of these extensions include repair strategies, none currently support
the complexity of the maintenance policies we would like to analyse. This leads to
our next question:

Research question 2: How can the formalism of fault trees be extended to
include complex maintenance policies, including inspections and condition-based
repairs?

This question led us to develop fault maintenance trees (Chapter 5), which
extend fault trees with advanced concepts policies, and also with more detailed
descriptions of the wear-out behaviour of components and their dependencies.

To meet our goal of allowing the comparison of different maintenance policies,
we need to enable the quantitative analysis of fault maintenance trees to compute
the system dependability and cost under a given strategy. Thus, we find our next
question:

Research question 3: How can fault maintenance trees be analysed to com-
pute quantitative metrics on the system dependability and costs under a given
maintenance policy?

We found that statistical model checking is a useful technique for the quan-
titative analysis of FMTs, allowing us to obtain various metrics, such as system
reliability, expected number of failures, and expected costs. This technique pro-
vides statistically justified confidence intervals, and allows the analysis of complex
systems within practical amounts of time and memory.

We did find that, when the system being analysed has high reliability, the
amount of time required for a tight confidence interval increases. For the analysis of
safety-critical systems, which typically have such high reliability, statistical model
checking could not deliver results with the desired accuracy without spending too
much computation time. This leads us to our next question:

Research question 4: How can we reduce the analysis time for the dependability
of highly dependable systems?

We found that the recently developed Path-ZVA algorithm [RdBSJ18] for
importance sampling can be adapted to the setting of FMTs (Chapter 6). This

15

algorithm improves the analysis time for the estimation of very low probabilities
(such as the failure probability of a highly dependable system), without losing the
statistically justified confidence intervals of statistical model checking.

Finally, we want to examine how FMTs can be applied in practice. For this
purpose, we collaborated with two prominent companies in the railway industry
(the Dutch railway infrastructure asset manager Prorail, and the Dutch rolling
stock maintenance company NS/NedTrain) on two challenging case studies, to
investigate our last research question:

Research question 5: Can FMTs be applied to analyse practical systems in
the railway industry, and what insights does such an analysis provide?

We found that FMTs are able to model the degradation and maintenance of
two systems, an electrically insulated joint (Chapter 7) and a pneumatic compres-
sor (Chapter 8). Our analysis gave insights both into the effects of the current
maintenance policy, and into how the policy might be improved.

1.7 Main contributions
This aim of this thesis is to develop the formalism of fault maintenance trees and
demonstrate their applicability in practical cases. Specifically, this thesis presents
the following contributions:

• Survey of fault tree literature: A large body of published work exists on fault
tree analysis, including many extensions and variants on classical fault trees.
Chapters 2–4 present an survey of over 150 articles on the topic, providing
an in-depth summary of the state of the art.

• Integration of maintenance into fault trees: Fault maintenance trees (FMTs)
are presented (Chapter 5), extending fault trees with advanced models of
component degradation and maintenance policies. They allow the modelling
of a wide of maintenance actions, and can be analysed using statistical
model checking to compute dependability metrics such as reliability and
availability, as well as costs. As such, they can be used to compare the effects
different maintenance policies, enabling maintenance engineers to optimise
their maintenance plans.

• Rare event simulation for repairable DFTs: We propose an approach (in
Chapter 6) exploiting the recently developed Path-ZVA algorithm [RdBSJ18]
for importance sampling for the analysis of repairable (dynamic) fault trees.
This approach allows the estimation of the availability of highly reliable
systems using much less computation time than traditional simulation tech-
niques.

16

• Demonstration of FMTs in practice: Two case studies are presented (Chap-
ters 7 and 8) applying FMT analysis on real-world systems from the railway
industry, namely an electrically insulated joint and a pneumatic compressor.
We show that FMTs can accurately model the reliability of these systems,
and can be used to find improvements of their maintenance policies to reduce
costs and increase their dependability.

1.8 Thesis outline
Figure 1.4 illustrates the general process of performing a fault maintenance tree
analysis. The structure of the thesis roughly follows this diagram from right to left.
In particular:

• Chapter 2 introduces fault trees, explaining their structure and semantics
and describing various analysis techniques that have been developed over the
years. This chapter mostly concerns step 1 in the diagram.

• Chapter 3 explains dynamic fault trees, a prominent extension of fault
trees that is able to model more advanced concepts, such as spare parts and
time-dependent failure behaviour. This chapter also describes the analysis of
dynamic fault trees. This chapter concerns steps 1 and 2 in the diagram.

• Chapter 4 describes various extensions of fault trees. These extend fault
trees to cover a wide range of features, including, e.g., uncertainty about
failure rates, advanced temporal dependencies between events, and repair
policies. This chapter mostly described step 1 in the diagram.

• Chapter 5 introduces fault maintenance trees, a novel extension of fault trees
that adds models of components wearing out over time, and sophisticated
maintenance policies to prevent or undo such wear. We also explain how
FMTs are analysed using statistical model checking. This chapter addresses
steps 1, 2, and 3 of the diagram.

• Chapter 6 describes an alternative method for analysing FMTs using rare
event simulation. This technique allows more accurate estimations of quanti-
tative metrics using less simulation time, at the expense of increased memory
consumption compared to the statistical model checker used in Chapter 5.
This chapter addresses step 3 of the diagram.

• Chapter 7 uses the industrial case study of an electrically insulated railroad
joint to demonstrate the practical applicability of FMTs in industry. We
show how FMTs are used to model the degradation and maintenance of this
joint, validate the model against historical failure data, and show that the

17

Chapter 2:
FTs

Chapter 3:
DFTs

Chapter 4:
FT Extensions

Fa
ul
t
Tr

ee
s

Pa
rt

I:

Chapter 5:
Fault Maintenance Trees

Chapter 6:
Rare Event SimulationFM

Ts
Pa

rt
II
:

Chapter 7:
EI-Joint

Chapter 8:
CompressorC

as
es

Pa
rt

II
I:

Chapter 1: Introduction

Chapter 9: Conclusions

Figure 1.6: Dependencies between chapters

reference maintenance policy for such joints is approximately cost-optimal.
This chapter concerns steps 1 and 4.

• Chapter 8 applies FMTs to the case of a pneumatic compressor found
on trains. We again show that FMTs can accurately model the wear and
maintenance of this compressor, validate the model, and provides suggestions
for attaining almost the same reliability at a reduced maintenance cost. This
chapter discusses steps 1 and 4.

• Chapter 9 concludes the thesis with a discussion of the advantages and dis-
advantages of fault maintenance trees and their analysis, as well as providing
avenues for future research.

Reading guide. Although each chapter can be roughly understood individually,
this thesis is intended to be read sequentially, and later chapters depend on concepts
that are only described in detail in earlier chapters. Exceptions to this are Chapters
4 and 6, which are not needed for later chapters.

Figure 1.6 illustrates the dependencies between the chapters. Chapter 2 may
be skipped by those already familiar with fault trees and their analysis, as may
Chapter 3 for those familiar with dynamic fault trees and the Markov chain-based
analysis thereof.

18

Part I

Fault trees

19

Chapter 2

Introduction to fault trees

Risk analysis is an important activity to ensure that critical assets, like medical
devices and nuclear power plants, operate in a safe and reliable way. Fault tree
analysis (FTA) is one of the most prominent techniques here, used by a wide
range of industries such as the aerospace [SVD+02], automotive [ISO11], and
nuclear [VGRH81] industries. Various industrial standard have been developed for
FTA, e.g. by the IEC [IEC06b] and by ISO for automotive applications [ISO11].

Fault trees (FTs) are a graphical method that model how failures propagate
through the system, i.e., how component failures lead to system failures. Due to
redundancy and spare management, not all component failures lead to a system
failure.

As a model of this failure propagation, FTs are trees, or more generally directed
acyclic graphs, whose leaves model component failures and whose gates describe
which combinations of failures lead to (sub)system failures. Figure 2.2 shows a
representative example, which is elaborated in Example 4.

Fault trees are used for various purposes within risk analysis:

• Exploring design alternatives: System designers often have several options
for ensuring the dependability of their system, such as using more reliable
(and expensive) components, using more components in a redundant fashion,
etc. FTA can be used to assess the dependability of different designs to help
select the best option [GJK+17a].

• Demonstrating compliance: Many industries are subject to legal requirements
for dependability. For example, the US Department of Labor sets standards
for the safety of equipment in workplaces, and specify fault trees as a tool to
help demonstrate that equipment meets this standard [OSH94]. Similarly,
the Federal Aviation Administration lists FTA as one of the tools for hazard
analysis in high-consequence decisions [FAA98, FAA00].

• Fault diagnosis: Even if a system is highly reliable, there is always a possibility
that failures still occur. Fault trees can be used in such situations to help
identify the most likely causes of the failure, which helps speed up repairs
[LY77]. This thesis does not discuss how to perform such diagnosis.

21

To perform a fault tree analysis, we distinguish between qualitative FTA, which
considers the structure of the FT, and quantitative FTA, which computes values
such as failure probabilities for FTs. In the qualitative realm, cut sets are an
important measure, indicating which combinations of component failures lead to
system failures. If a cut set contains too few elements, this may indicate a system
vulnerability. Other qualitative measures we discuss are path sets and common
cause failures.

Quantitative system measures mostly concern the computation of failure proba-
bilities. If we assume that the failures of the system components are governed by a
probability distribution, then quantitative FTA computes the failure probability
for the system. Here, we distinguish between discrete and continuous probabilities.
For both variants, the following FT measures are discussed:

• System reliability is the probability that the system fails with a given time
horizon 𝑡.

• System availability is the percentage of time that the system is operational.

• Mean time to failure is the average time before the first failure.

• Mean time between failures is the average time between two subsequent
failures.

Such measures are vital to determine if a system meets its dependability
requirements, or whether additional measures are needed. Furthermore, we discuss
sensitivity analysis techniques, which determine how sensitive an analysis is with
respect to the values (i.e., failure probabilities) in the leaves; we also discuss
importance measures, which give means to determine how much different leaves
contribute to the overall system dependability.

In terms of analysis, we explain basic algorithms such as boolean algebra for
cut sets, as well as more efficient algorithms such as binary decision diagram-
based methods for computing reliability. Overviews of the various methods can be
found in Tables 2.1 (Page 32 on methods for minimal cut sets), 2.3 (Page 43 on
quantitative methods), and 2.4 (Page 59 on importance measures).

While SFTs (standard, or static, fault trees) provide a simple and informative
formalism, they lack the expressivity needed to model certain often occurring
dependability patterns. Therefore, several extensions to fault trees have been
proposed, which are capable of expressing features that are not expressible in SFTs.
Examples include spare management, different operational modes, and dependent
events. Dynamic Fault Trees are the best known, and discussed in the next chapter.
Other extensions, such as extended fault trees, repairable fault trees, fuzzy fault
trees, and state-event fault trees, are popular as well. These extensions and their
analysis techniques will be explored in Chapter 4. A graphical overview of the
structure of these chapters can be seen in Figure 2.1.

22

FTs

Static FTs (Chapter 2)

Dynamic FTs (Chapter 3)

Other FT extensions (Chapter 4)

Qualitative (Section 2.3)

Quantitative single-time (Section 2.4)

Quantitative cont. time (Section 2.5)

Qualitative (Section 3.2)

Quantitative (Section 3.3)

Undertainty (Section 4.1)

Dependencies (Section 4.2)

Repairs (Section 4.3)

Temporal restrictions (Sections 4.4 and 4.5)

Figure 2.1: Broad overview of the structure of the next three chapters.

In researching fault trees and their extensions, we have reviewed over 150 papers
on fault tree analysis, providing an extensive overview of the state-of-the-art in
fault tree analysis.

Research Methodology Most literature for this chapter was found during a
survey in 2014. This survey was intended to be as comprehensive as reasonable,
but we cannot guarantee that we have found every relevant paper.

To obtain relevant papers, we searched for the keywords ’Fault tree’ in the
online databases
Google Scholar (http://scholar.google.com),
IEEExplore (http://ieeexplore.ieee.org),
ACM Digital Library (http://dl.acm.org),
Citeseer (http://citeseerx.ist.psu.edu),
ScienceDirect (http://www.sciencedirect.com),
SpringerLink (http://link.springer.com),
and SCOPUS (http://www.scopus.com). Further articles were obtained by fol-
lowing references from the papers found.

Articles were excluded that are not in English, or deemed of poor quality.
Furthermore, to limit the scope of this survey, articles were excluded that present
only applications of FTA, only methods for constructing FTs, or only describe
techniques for fault diagnosis based on FTs, unless the article also presents novel
analysis or modeling techniques. Articles presenting implementations of existing
algorithms were only included if they describe a specific, working tool.

23

http://scholar.google.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://citeseerx.ist.psu.edu
http://www.sciencedirect.com
http://link.springer.com
http://www.scopus.com

Origin of this chapter This chapter is extended from Chapters 1 and 2 of:

• Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. Computer Science Review,
15–16:29–62, 2015. doi: 10.1016/j.cosrev.2015.03.001, issn: 1574-0137.

Organization of this chapter After a brief overview of dependability for-
malisms other than fault trees in Section 2.1, Section 2.2 provides a definition of
fault trees and their semantics, followed by their analysis methods. Section 2.3 dis-
cusses qualitative analysis, while Sections 2.4 and 2.5 discuss quantitative analysis
in single-time and continuous-time FTs, respectively. Section 2.6 describes various
qualitative and quantitative importance measures. Finally, Section 2.7 describes
several available tools, and Section 2.8 presents some conclusions.

Computer Failure

FF In Use (U)

C

Ws B

W1 W2

C1 PS
Mem

C2PS

M1 M2 M3

2/3

1

Legend:
F: Computer failure while in use
C: Computer failure
Ws: Failure of both workstations
B: Bus failure
W1: Failure of workstation 1
W2: Failure of workstation 2
C1: Failure of CPU 1
C2: Failure of CPU 2
PS: Failure of power supply
Mem: Failure of memory system
M1: Failure of memory module 1
M2: Failure of memory module 2
M3: Failure of memory module 3

Figure 2.2: Example FT of a computer system with a non-redundant system
bus and power supply, two redundant CPUs of which one can fail with causing
problems, and three redundant memory units of which one is allowed to fail. PS is
coloured differently to indicate that both leaves correspond to the same event.

24

https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001

2.1 Related work
Apart from fault trees, there are a number of other formalisms for dependability
analysis [BV10]. We list the most common ones below.

Failure Mode and Effects Analysis One of the first systematic techniques for
dependability analysis was the Failure Mode and Effects Analysis (FMEA) [RH04,
BCK+11]. FMEA, and in particular its extension with criticality FMECA (Failure
Mode, Effects and Criticality Analysis), is still very popular today; users can be
found throughout the safety-critical industry, including the nuclear, defence [U.S90],
avionics [FAA05], automotive [Aut08], and railroad domains. These analyses offer
a structured way to list possible failures and the consequences of these failures.
Possible countermeasures to the failures can also be included in the list.

If probabilities of the failures are known, quantitative analysis can also be
performed to estimate system reliability and to assign numeric criticalities to
potential failure modes and to system components [U.S90].

Constructing an FME(C)A is often one of the first steps in constructing a fault
tree, as it helps in determining the possible component failures, and thus the basic
events [SVD+02].

HAZOP analysis A hazard and operability study (HAZOP) [Kle99] systemati-
cally combines a number of guide-words (like insufficient, no, or incorrect) with
parameters (like coolant or reactant), and evaluates the applicability of each combi-
nation to components of the system. This results in a list of possible hazards that
the system is subject to. The approach is still used today, especially in industrial
fields like the chemistry sector.

A HAZOP is similar to an FMEA in that both list possible causes of a failure.
A major difference is that an FMEA considers failure modes of components of a
system, while a HAZOP analysis considers abnormalities in a process.

Reliability block diagrams Similar to fault trees, reliability block diagrams
(RBDs) [MKK09] decompose systems into subsystems to show the effects of (com-
binations of) faults. Similar to FTs, RBDs are attractive to users because the
blocks can often map directly to physical components, and because they allow
quantitative analysis (computation of reliability and availability) and qualitative
analysis (determination of cut sets).

To model more complex dependencies between components, Dynamic RBDs
[DX06] include standby states where components fail at a lower rate, and triggers
that allow the modeling of shared spare components and functional dependencies.
This may improve the accuracy of the computed reliability and availability.

25

OpenSESAME The OpenSESAME modeling environment [WSB08] extends
RBDs by allowing more types of inter-component dependencies, common cause
failures, and limited repair resources. This is mostly an academic approach and
sees little use in industry.

SAVE The system availability estimator (SAVE) [GCdSeS+95] modeling lan-
guage is developed by IBM, and allows the user to declare components and depen-
dencies between them using predefined constructs. The resulting model is then
analyzed to determine availability.

AADL The Architecture Analysis and Design Language (AADL) [Soc17] is an
industry standard for modeling safety-critical systems architectures. A complete
AADL specification consists of a description of nominal behaviour, a description
of error behaviour and a fault injection specification that describes how the error
behaviour influences the nominal behaviour.

Such an AADL specification can be used to derive an FMEA table [ENN13] in a
systematic way. If failure rates are known, quantitative analysis can also determine
the system reliability and availability [BCK+11].

UML Another industry standard for modeling computer programs, but also
physical systems and processes, is the Unified Modeling Language (UML) [RJB04].
UML provides various graphical models such as Statechart diagrams and Sequence
diagrams to assist developers and analysts in describing the behaviours of a system.

It is possible to convert UML Statechart diagrams into Petri Nets, from which
system reliability can be computed [BMM99, BDM02]. Another approach combines
several UML diagrams to model error propagation and obtain a more accurate
reliability estimate [PDAC05].

Möbius The Möbius framework was developed by Sanders et al. [DCC+02,
SCD+03] as a multi-formalism approach to modeling. The tool allows components
of a system to be specified using different techniques and combined into one model.
The combined model can then be analyzed for reliability, availability, and expected
cost using various techniques depending on the underlying models.

2.1.1 Legal background
FTA plays an important role in product certification, and to show conformance to
legal requirements. In the European Union, legislature mandates that employers
assess and mitigate the risks that workers face [EEC89]. FTA can be applied in
this context, e.g. to determine the conditions under which a particular machine is

26

(a) Intermediate event (b) Transfer in (c) Transfer out (d) Undeveloped event

Figure 2.3: Graphical representations of non-basic events in fault trees

dangerous to workers [IEC06b]. The U.S. Department of Labor has also accepted
the use of FTA for risk assessment in workplace environments [OSH94].

Similarly, the EU Machine Directive [EC06] requires manufacturers to determine
and document the risks posed by the machines they produce. FTA is one of the
techniques that can be used for this documentation [Hoo10].

The transportation industry has also adopted risk analysis requirements, and
FTA as a technique for performing such analysis. The Federal Aviation Adminis-
tration adopted a policy in 1998 [FAA98] requiring a formalized risk management
policy for high-consequence decisions. Their System Safety Handbook [FAA00]
lists FTA as one of the tools for hazard analysis.

2.2 Static fault trees
As discussed in the previous section, it is often necessary to analyze system
dependability properties. A fault tree is a graphical model to do so: It describes
the relevant failures that might occur in the system, and how these failures interact
to possibly cause a failure of the system as a whole.

Standard, or static, fault trees (SFTs) are the most basic fault trees. They have
been introduced in the 1960s at Bell Labs for the analysis of a ballistic missile
[Eri99]. The classical Fault Tree Handbook by Vesely et al. [VGRH81] provides
a comprehensive introduction to SFTs. Below, we describe the most prominent
modelling and analysis techniques for SFTs.

2.2.1 Fault Tree Structure
A fault tree is a directed acyclic graph (DAG) consisting of two types of nodes:
events and gates. An event is an occurrence within the system, typically the failure
of a subsystem or component. Events can be divided into basic events (BEs),
which occur on their own, and intermediate events, which are caused by one or
more other events. The event at the top of the tree, called the top event (TE,
a.k.a. ‘top level event’ or ‘(top) undesired event’), is the event being analyzed,
modeling the failure of the (sub)system under consideration.

27

Fault tree gates

Gates represent how failures propagate through the system, i.e., how failures in
subsystems can combine to cause a system failure. Each gate has one output and
one or more inputs. The following gates are commonly used in fault trees. Images
of the gates are shown in Figure 2.4.

AND Output event occurs if all of the input events occur, e.g. gate Ws in the
example.

OR Output event occurs if any of the input events occur, e.g. gate C in the
example.

k/N a.k.a. VOTING, has N inputs. Output event occurs if at least k input events
occur. This gate can be replaced by the OR of all sets of k inputs, but using
one k/N gate is much clearer. Gate Mem in the example is a 2/3 gate.

INHIBIT Output event occurs if the input event occurs while the conditioning
event drawn to the right of the gate also occurs. This gate behaves identically
to an AND-gate with two inputs, and is therefore not treated in the rest of
this chapter. It is sometimes used to clarify the system behaviour to readers.
Gate F in the example is an INHIBIT gate.

Example 4 Figure 2.2 (modified from [MT95, BHMT96]) shows a fault tree for
a partially redundant computer system. The system consists of a bus, two CPUs,
3 memory units, and a power supply. These components are represented as basic
events in the leaves of the tree. The top of the tree (labeled Computer Failure
here) represents the event of interest, namely a failure of the computer system.

As stated, gates represent how failures propagate through the system: Gate
F is an INHIBIT-gate indicating that a system failure is only considered when
the system is in use, so that faults during intentional downtime do not affect
dependability metrics.

The OR gate C, just below F, indicates that the failure of either the bus (basic
event B) or the workstation subsystem causes a system failure. The workstation
subsystem consists of two redundant units combined using an AND gate Ws so
that both need to fail to cause an overall failure. Each workstation can fail because
either the CPU (C1 or C2) fails or the power supply (PS) fails. Note that the
event PS is duplicated for each subtree, but still represents a single event.

A failure of the memory subsystem can also cause a unit to fail, but this
requires a failure of two memory units. This is represented by the 2/3 gate Mem.
This gate is an input of both compute subsystems, making this a DAG, but the
subtree could also have been duplicated like PS if the method used required a tree
but allowed repeated events.

28

(a) AND gate (b) OR gate

k/N

(c) k/N gate (d) INHIBIT gate

Figure 2.4: Graphical representations of the gates types in a standard fault tree

Non-basic events

In addition to basic events depicted by circles, Figure 2.3 shows other symbols for
events. An intermediate event is depicted by a rectangle. Intermediate events can
be useful for documentation, but do not affect the analysis of the FT, and may
therefore be omitted. If an FT is too large to fit on one page, triangles are used to
transfer events between multiple FTs to act as one large FT. Finally, sometimes
subsystems are not really BEs, but insufficient information is available or the event
is not believed to be of sufficient importance to develop the subsystem into a
subtree. Such an undeveloped event is denoted by a diamond.

Extensions

Several extensions of FTs introduce additional gates that allow the modelling of
systems that can return to a functional state after failure. These ‘Repairable Fault
Trees’ will be described in Section 4.3. Static FTs can include simple repairs (as
discussed in Section 2.5) by decorating BEs with repair rates, rather that using
additional gates.

Other extensions include a NOT-gate or equivalent (e.g., exclusive-or), so that a
component failure can cause the system to go from failed to working again [LGTL85],
or a functioning component can contribute to a system failure. Such a system is
called noncoherent. It may indicate an error in modeling [VGRH81], however some
systems naturally exhibit noncoherent behaviour: For example, the combination
of a failed safety valve and a functioning pump can lead to an explosion, while a
failed pump always prevents this.

2.2.2 Formal definition
To formalize an FT, we use GateTypes = {AND,OR} ∪ {VOT(k/N) | 𝑘,𝑁 ∈
ℕ>1, 𝑘 ≤ 𝑁}. Following Codetta-Raiteri et al. [CRFIV04], we formalize an FT as
follows.

Defintion 1 An FT is a 4-tuple 𝐹 = ⟨BE, 𝐺, 𝑇 , 𝐼⟩, consisting of the following
components.

29

• BE is the finite set of basic events.

• 𝐺 is the finite set of gates, with BE ∩𝐺 = ∅. We write E = BE ∪𝐺 for the
set of elements.

• 𝑇 ∶ 𝐺 → GateTypes is a function that describes the type of each gate.

• 𝐼 ∶ 𝐺 → 𝒫(E) describes the inputs of each gate. We require that 𝐼(𝑔) ≠ ∅
and that |𝐼(𝑔)| = 𝑁 if 𝑇 (𝑔) = VOT(k/N).

Importantly, the graph formed by ⟨E, 𝐼⟩ should be a directed acyclic graph with a
unique root TE which is reachable from all other nodes.

This description does not include the INHIBIT gate, since this gate can be
replaced by an AND. The INHIBIT gate may, however, be useful for documentation
purposes. Also, intermediate events are not explicitly represented, again because
they do not affect analysis.

Some analysis methods described in Sections 2.3 through 2.6 require the undi-
rected graph ⟨E, 𝐼⟩ to be a tree, i.e., forbid shared subtrees. In this chapter, an FT
will be considered a DAG. An element that is the input of multiple gates can be
graphically depicted in two ways: The element (and its descendants) can be drawn
multiple times, in which case the FT still looks like a tree, or the element can be
drawn once with multiple lines connecting it to its parents. Since these depictions
have the same semantics, we refer to these elements as shared subtrees or shared
BEs regardless of graphical depiction.

2.2.3 Semantics
The semantics of an FT 𝐹 describes, given a set 𝑆 of BEs that have failed, for each
element 𝑒, whether or not that element fails. We assume that all BEs not in 𝑆
have not failed.

Typically, the semantics of an FT 𝐹 are described as its structure function: the
function 𝜋𝐹 ∶ {0, 1}|𝐵𝐸| → {0, 1} that takes the status of all basic events as inputs
(0 for a functioning event and 1 for a failed event) and yields whether the FT 𝐹 is
functional (0) or failed (1).

We use a slight variation on this function, which also provides information
about the intermediate events.

Defintion 2 The semantics of FT 𝐹 is given by the function 𝜋𝐹 ∶ 𝒫(BE) × 𝐸 →
{0, 1} where 𝜋𝐹(𝑆, 𝑒) indicates whether 𝑒 fails given the set 𝑆 of failed BEs. It is
defined as follows.

• For 𝑒 ∈ BE, 𝜋𝐹(𝑆, 𝑒) = 𝑒 ∈ 𝑆.

30

• For 𝑔 ∈ 𝐺 and 𝑇 (𝑔) = AND, let 𝜋𝐹(𝑆, 𝑔) = ⋀
𝑥∈𝐼(𝑔)

𝜋𝐹(𝑆, 𝑥).

• For 𝑔 ∈ 𝐺 and 𝑇 (𝑔) = OR, let 𝜋𝐹(𝑆, 𝑔) = ⋁
𝑥∈𝐼(𝑔)

𝜋𝐹(𝑆, 𝑥).

• For 𝑔 ∈ 𝐺 and 𝑇 (𝑔) = VOT(𝑘,𝑁), let 𝜋𝐹(𝑆, 𝑔) = (∑
𝑥∈𝐼(𝑔)

𝜋𝐹(𝑆, 𝑥)) ≥ 𝑘.

Note that the AND gate with 𝑁 inputs is semantically equivalent to an
VOT(N/N) gate, and the OR gate with 𝑁 inputs is semantically equivalent to a
VOT(1/N) gate.

In the remainder of this chapter, we abbreviate the interpretation of the top
event 𝑡 by stating 𝜋𝐹(𝑆, 𝑡) = 𝜋𝐹(𝑆). This corresponds to the structure function of
the fault tree expressed using sets instead of boolean vectors.

It follows easily that standard FTs are coherent, i.e., if event set 𝑆 leads to a
failure, then every superset 𝑆′ also leads to failure. Formally, 𝑆 ⊆ 𝑆′ ∧ 𝜋𝐹(𝑆, 𝑥) =
1 ⇒ 𝜋𝐹(𝑆′, 𝑥) = 1.

2.3 Qualitative analysis
Fault tree analysis techniques can be divided into quantitative and qualitative
techniques. Qualitative techniques provide insight into the structure of the FT,
and are used to detect system vulnerabilities. We discuss the most prominent
qualitative techniques, being (minimal) cut sets, (minimal) path sets, and common
cause failures. We recall the classic methods for quantitative and qualitative fault
tree analysis presented in [LGTL85] as well as many newer techniques.

In Tables 2.1, 2.2, 2.3, and 2.4, we have summarized the qualitative analysis
techniques that we discuss in the current section.

Quantitative techniques are discussed in later sections. These compute numeri-
cal values over the FT. Quantitative techniques can be divided into importance
measures (discussion in Section 2.6, indicating how critical a certain component
is, and stochastic measures, most notably failure probabilities. The stochastic
measures are again divided into those handling single-time failure probabilities and
continuous-time ones, described in Sections 2.4 and 2.5, respectively.

Sensitivity analysis

Quantitative techniques produce values for a given FT, but it is often useful to
know how sensitive these values are to the input data. For example, if small changes
in BE probabilities result in a large variation in system reliability, the calculated
reliability may not be useful if the probabilities are based on rough estimates. On

31

Author Method Remarks Tool
Vesely et al.
[VGRH81]

Top-down Classic boolean method MOCUS
[FHM74]

Vesely et al.
[VGRH81]

Bottom-up Produces MSC for gates MICSUP
[PSC75]

Coudert and
Madre [CM93]

BDD Usually faster than classic meth-
ods

MetaPrime
[CM94]

Rauzy [Rau93] BDD Only for coherent FTs but faster
than [CM93]

Aralia
[RD97]

Dutuit and
Rauzy [DR96]

Modular BDD Faster for FTs with independent
submodules

DIFTree
[DVG97]

Remenyte et al.
[RA06, RPA08]

BDD Comparison of BDD construction
methods

-

Codetta-Raiteri
[CR06]

BDD Faster when FT has shared sub-
trees

-

Xiang et al.
[XYM+11]

Minimal Cut Vote Reduced complexity with large
voting gates

CASSI
[XYM+11]

Carrasco et al.
[Cn99]

CS-Monte Carlo Less complex for FTs with few
MCS

-

Vesely and
Narum [VN70]

Monte Carlo Low memory use, accuracy not
guaranteed

PREP
[VN70]

Table 2.1: Summary of methods to determine Minimal Cut Sets of SFTs

the other hand, if the reliability is very sensitive to one particular component’s
failure rate, this component may be a good candidate for improvement.

If the quantitative analysis method used gives an algebraic expression for the
failure probability, it may be possible to analyze this expression to determine the
sensitivity to a particular variable. One method of doing so is provided by [Rus85].

In many cases, however, sensitivity analysis is performed by running multiple
analysis with slightly different values for the variables of interest.

If the uncertainty of the BE probabilities is bounded, an extension to FT called
a Fuzzy Fault Tree can be used to analyze system sensitivity. This method is
explained in Section 4.1.

2.3.1 Minimal cut sets
Cut sets and minimal cut sets provide important information about the vulner-
abilities of a system. A cut set is a set of components that can together cause
the system to fail. Thus, if an SFT contains cut sets with just a few elements,
or elements whose failure is too likely, this could result in an unreliable system.
Reducing the failure probabilities of these cut sets is usually a good way to improve
overall reliability. Minimal cut sets are also used by some quantitative analysis

32

Computer Failure

FF In Use (U)

C

Ws B

W1 W2

C1 PS
Mem

C2PS

M1 M2 M3

2/3

(a) Minimal cut set
{𝑈, 𝐵}

Computer Failure

FF In Use (U)

C

Ws B

W1 W2

C1 PS
Mem

C2PS

M1 M2 M3

2/3

(b) Cut set {𝑈, 𝑀1, 𝑀2,
𝑀3}

Computer Failure

FF In Use (U)

C

Ws B

W1 W2

C1 PS
Mem

C2PS

M1 M2 M3

2/3

(c) Minimal cut set {𝑈,
𝑀1, 𝑀2}

Figure 2.5: Examples of cut sets of the FT in Figure 2.2. Basic events in
the cut set are indicated in dark blue, affected (failed) gates in lighter blue.

techniques described in Sections 2.4 through 2.6.
This section describes three important classes of cut set analysis: Classical

methods which are based on manipulation of the boolean expression of the FT,
methods based on Binary Decision Diagrams, and others. Table 2.1 summarizes
these techniques.

Defintion 3 A set 𝐶 ⊆ BE is a cut set of FT 𝐹 if 𝜋𝐹(𝐶) = 1. A minimal cut
set (MCS) is a cut set of which no subset is a cut set, i.e., formally 𝐶 ⊆ BE is
an MCS if 𝜋𝐹(𝐶) = 1 ∧ ∀𝐶′⊂𝐶 ∶ 𝜋𝐹(𝐶′) = 0.

Example 5 Figure 2.5 shows three examples of cut sets. (a) shows that {𝑈,𝐵}
is an MCS. The cut set in (b) is {𝑈,𝑀1,𝑀2,𝑀3}, but this is not an MCS since
it contains the cut set {𝑈,𝑀1,𝑀2} shown in (c).

Deciding whether a given set 𝐶 is a cut set is trivial, as one can simple evaluate
the semantics of the tree given 𝐶 and examine whether the TE has failed or not.

Denoting the set of all MCS of an FT 𝐹 as 𝑀𝐶(𝐹), we can write an expression
for the top event as ⋁

𝐶∈𝑀𝐶(𝐹)
⋀

𝑥∈𝐶
𝑥. This property is useful for the analysis of

the tree, as described below.

33

Boolean manipulation

The classical methods of determining minimal cut sets are the bottom-up and the
top-down (a.k.a. Mocus) algorithms [VGRH81]. These represent each gate as a
Boolean expression of BEs and/or other gates. These expressions are combined,
expanded, and simplified into an expression that relates the top event to the BEs
without any gates (thus, it is an expression of the structure function). At every
step, the expressions are converted into disjunctive normal form (DNF), so that
each conjunction is an MCS.

Example 6 The first few steps of the top-down algorithm for the FT in Figure 2.2
are:

• 𝐹 = 𝑈 ∧ 𝐶

• 𝐹 = 𝑈 ∧ (𝐵 ∨ Ws) since 𝐶 = 𝐵 ∨ Ws.

• 𝐹 = (𝑈 ∧ 𝐵) ∨ (𝑈 ∧ Ws) converting to disjunctive normal form

• ...

Continuing in this fashion until all gates have been eliminated results in the
minimal cut sets.

The bottom-up method begins with the expressions for the gates at the bottom
of the tree. This method usually produces larger intermediate results since fewer
opportunities for simplification arise. As a result, it is often more computationally
intense. However, it has the advantage of also providing the minimal cut sets for
every gate, as shown in the following example:

Example 7 The first few steps of the bottom-up algorithm for the FT in Fig-
ure 2.2 are:

• Mem = (𝑀1 ∧𝑀2) ∨ (𝑀2 ∧𝑀3) ∨ (𝑀1 ∧𝑀2) since Mem is a 2/3 voting
gate

• 𝑊1 = 𝐶1 ∨ PS ∨ Mem

• 𝑊1 = 𝐶1 ∨ PS ∨ (𝑀1 ∧𝑀2) ∨ (𝑀2 ∧𝑀3) ∨ (𝑀1 ∧𝑀3)

• ...

This already shows the cut sets for Mem and W1. Continuing in this fashion
eventually gives cut sets for all gates, including the top level event.

34

Binary Decision Diagrams

An efficient way to find MCS is by converting the fault tree into a Binary Decision
Diagram (BDD) [Ake78, Bry92]. A BDD is a directed acyclic graph that represents
a boolean function 𝑓 ∶ {0, 1}𝑛 → {0, 1}. The leaves of a BDD are labeled with
either 0 or 1. The other nodes are labeled with a variable 𝑥𝑖 and have two children.
The left child represents the function in case 𝑥𝑖 = 0; the right child represents the
function 𝑥𝑖 = 1. BDDs are heavily used in model checking, to efficiently represent
the state space and transition relation [CM93, CGP99].

Example 8 Figure 2.6d shows the BDD obtained by converting the FT in
Figure 2.6a. Each circle represents a BE, and has two children: a 0-child
containing the sub-BDD that determines the system status if the BE has not
failed, and a 1-child for if it has. The leaves of the BDD are squares containing
1 or 0 if the system has resp. has not failed. For example, if components 𝐸1
and 𝐸2 have failed, we begin traversing the BDD at its root, observe that 𝐸1 has
failed, and follow the 1-edge. From here, since 𝐸3 is operational we follow the
0-edge. We have now reached a leaf containing a 0, so this combination does not
result in a system failure.

To construct a BDD from a boolean formula 𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛), one can use the
Shannon expansion formula [Ake78] (slightly reformulated):

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) = {𝑓(1, 𝑥2, ⋯ , 𝑥𝑛) if 𝑥1 = 1
𝑓(0, 𝑥2, ⋯ , 𝑥𝑛) if 𝑥1 = 0

Based on this, the if-then-else method [CM93] translates a fault tree (or any
boolean function) to a BDD as follows: we let 𝑥1 be the top node, and 𝑓(0, 𝑥2, ⋯ , 𝑥𝑛)
and 𝑓(1, 𝑥2, ⋯ , 𝑥𝑛) the functions for its children. We repeat this procedure for 𝑥2,
𝑥3, and so on until we reach the leaves of the tree. At the leaves, all variables have
been replaced by constant values, and we evaluate the function to determine the
value of that leaf.

Example 9 Figure 2.6 shows how to obtain a BDD from a fault tree. We
represent the fault tree as its boolean formula and begin the procedure: First,
we introduce a BDD node for 𝐸1 and write its 0-child as the formula with ⊥
substituted for 𝐸1, and its 1-child where a ⊤ is substituted. We simplify the
resulting formulas by eliminating obviously irrelevant operators and variables
(e.g., ⊤ ∨ 𝐸2 = ⊤ regardless of 𝐸2). Omission of this step would result in a
larger, but still correct, BDD. We now repeat this procedure for the 0-child by
splitting this node using the variable 𝐸2. We replace the formula ⊥ by a 0-leaf.
Observing that we have two nodes with formula ‘𝐸3’, we construct the node for

35

𝐸3, replace its children by leaves as they contain no more variables, and connect
the 1-edges of 𝐸1 and 𝐸2 to this new node.

An alternative method for constructing BDDs was developed by [WH00]: the
component-connection method. An example of this method is shown in Figure 2.7.
This method first constructs small BDDs for every gate in the tree (e.g., for an
AND-gate, this BDD consists of the children of the gates connected such that a
0 from any child leads to the 0-leaf, and 1s from every child leads to the 1-leaf).
Next, any BDD nodes that correspond to other gates are replaced by the BDD of
those gates. In this substitution, edges to the 0-leaf in the child BDD are replaced
by the 0-edges of the parent BDD, and likewise for the 1-leaf. This substitution
is performed until only one BDD remains in which all nodes correspond to basic
events.

Obtaining cut sets using BDDs Cut sets can be determined from the BDD
by starting at all 1-leaves of the tree, and traversing upwards toward the root. The
set of all BEs reached by traversing a 1-edge from a particular leaf forms one CS.

The CS obtained by this method may not be minimal, depending on the
algorithm used to construct the BDD. One approach to obtain MCSs is to perform
a minimization on the BDD [Rau93] which ensures that only MCSs will be found.
Alternatively, Rauzy and Dutuit [RD97] provide a method to construct BDDs
encoding so-called prime implicants, from which MCSs can be directly computed.

The BDD method was first coined by [CM93] as well as by [Rau93]. It was
improved by [SA96] by adding a minimization algorithm for the intermediate
BDD. While the conversion to a BDD has exponential worst-case complexity, it
has linear complexity in the best case. In practice, BDD methods are usually
faster than boolean manipulation [Sin96]. This is strongly influenced by the
fact that BDDs very compactly represent boolean functions with a high degree
of symmetry [RBM91], and fault trees exhibit this symmetry as the gates are
symmetric in their inputs. A program that analyzes FTs using BDDs has been
produced by [CM94].

As for any boolean function, the conversion of an FT to a BDD is not unique:
Depending on the ordering of the BEs, different BDDs can be generated. Good
variable ordering is important to keep the BDD small. Unfortunately, even deter-
mining whether a given ordering of variables is optimal is an NP-complete problem
[BW96]. Figure 2.8 shows that a different variable ordering can reduce the size of
the resulting BDD.

Remenyte and Andrews [RA06, RPA08] have compared several different meth-
ods for constructing BDDs from FTs, and conclude that a hybrid of the if-then-else
method [Rau93] and the advanced component-connection method by [WH00] is a
good trade-off between processing time and size of the resulting BDD.

36

T

𝐺1

𝐺2
𝐸3

𝐸1 𝐸2

𝑇 = 𝐸3 ∧ (𝐸1 ∨ 𝐸2)

(a) Fault tree with boolean formula
𝐸1

𝑇 = 𝐸3 ∧ (⊥ ∨ 𝐸2)
= 𝐸3 ∧ 𝐸2

0

𝑇 = 𝐸3 ∧ (⊤ ∨ 𝐸2)
= 𝐸3 ∧ ⊤
= 𝐸3

1

(b) Introduction of BDD node for 𝐸1

𝐸1

𝐸2

0

𝑇 = 𝐸3

1

𝑇 = 𝐸3 ∧ ⊥
= ⊥

0

𝑇 = 𝐸3 ∧ ⊤
= 𝐸3

1

(c) Splitting of the leftmost child based
on 𝐸2

𝐸1

𝐸2

0

𝐸3

1

1

1

0

0 0

1

(d) Unification and splitting of the two
children containing formula 𝐸3

Figure 2.6: Example conversion of SFT to BDD using the if-then-else method
(some simplification of the boolean formulas at the intermediate steps was performed
for clarity).

37

T

𝐺1

𝐺2
𝐸3

𝐸1 𝐸2

(a) Fault tree

𝐺2

𝐸3

𝐺1:
1

0

0

0

1

1

𝐸1

𝐸2

𝐺2:

0

0

0

1

1 1

(b) Individual BDDs for the gates

𝐸1

𝐸2

0

𝐸3

1

1

1

0

0 0

1

(c) Substitution of the BDD for 𝐺2
into the BDD for 𝐺1

Figure 2.7: Example conversion of SFT to BDD using the component-connection
method. Colors show where the elements of the combined model originated.

38

SF

𝐸1

𝐸2 𝐸3

Ordering: 𝐸1 < 𝐸2 < 𝐸3

𝐸1

0

0

𝐸2

𝐸3

1

1

0

1
10

Ordering: 𝐸2 < 𝐸1 < 𝐸3

𝐸2

𝐸1

1
𝐸1

0

0
0

1

1
𝐸3

1

0
0 1

0

Figure 2.8: Example of how variable ordering affects BDD size. The upper BDD
requires 3 nodes, while placing 𝐸2 ahead of 𝐸1 require the 𝐸1 node to be present
twice, as shown in the lower BDD.

39

Improvements to BDDs Tang and Dugan [TD04] propose the use of zero-
suppressed BDDs (ZBDDs) to compute minimal cut sets. ZBDDs are similar to
BDDs, except that nodes are not omitted if both their children are identical, but
rather if their 1-child is a 0-leaf. This provides a more compact encoding if most
cases lead to 0-leaves. Combined with reduction rules to ensure minimality of the
cut sets, [TD04] shows that this approach is often more efficient for FTs than those
based on classic BDDs in both time and memory use.

Dutuit and Rauzy [DR96] provide an algorithm for finding independent sub-
modules (i.e., disjoint subtrees) of FTs, which can be converted separately to BDDs
and analyzed, reducing the time and memory required to analyze the entire tree.

If subtrees of an FT are shared, then the approach by [CR06] called ‘Parametric
Fault Trees’ can be used. This method performs qualitative and quantitative
analysis on such a tree without repeating the analysis for each repetition of a
subtree.

Miao et al. [MNTL13] have developed an algorithm to determine minimal cut
sets using a modified BDD, and claim its time complexity is linear in the number
of BEs, although their paper does not seem to support this claim. Moreover, this
result seems incorrect to us, since the number of MCSs is already exponential in
the number of BEs.

Other methods for qualitative analysis

FTs with voting gates with many inputs induce a combinatorial explosion in the
number of mminimal cut sets, since a 𝑘/𝑁 voting gate means each combination of
𝑘 failed components results in a separate cut set. The concept of a minimal cut
vote was proposed by [XYM+11] as a term in an MCS to represent an arbitrary
combination of 𝑘 elements. This method is of linear complexity in the number of
inputs to a voting gate, while the BDD approach has exponential complexity.

For relatively large trees with few cut sets, the algorithm by Carrasco and
Suñé [Cn99] may be useful. Its space complexity is based on the MCSs, rather
than the complexity of the tree like for BDDs. However, according to the article
this method does seem to be slower than the BDD approach.

In practice, it is often not necessary to determine all MCSs: Cut sets with
many components are usually unlikely to have all these components fail. It is often
sufficient to only find MCSs with at most a small (depending on the system and
desired accuracy) number of components. This may allow a substantial reduction
in computation time by reducing the size of intermediate expressions [LGTL85].

Due to the potentially very large intermediate expressions, the earlier methods
for finding MCSs can have large memory requirements. A Monte Carlo method can
be used as an alternative. In the method by [VN70], random subsets of components
are taken to be failed, according to the failure probabilities. If a subset causes
a top event failure, it is a cut set. Additional simulations reduce these cut sets

40

into MCSs. While the memory requirements of the Monte Carlo method are much
smaller, the large number of simulations can greatly increase computation time. In
addition, there is a chance that not all MCSs are found.

2.3.2 Minimal path sets

A minimal path set (MPS) is essentially the opposite of an MCS: It is a minimal
set of components such that, if they do not fail, the system remains operational.

Defintion 4 𝑃 ⊆ BE is a path set of FT 𝐹 if 𝜋𝐹(𝐵𝐸\𝑃) = 0.

Example 10 In Figure 2.2, an MPS is {𝐵,𝐶1,𝑀1,𝑀2, 𝑃𝑆}.

Similarly to MCSs, a fault tree has a finite number of MPSs. If we denote the
set of all MPSs of a fault tree as

MP(𝐹) = {𝑃 ⊆ BE∣ 𝜋𝐹(BE\𝑃) = 0 ∧
∀𝑃 ′⊂𝑃 ∶ 𝜋𝐹(BE\𝑃 ′) = 1}

then we can write a boolean expression for the TE as

TE = ⋀
𝑃∈𝑀𝑃(𝐹)

⋁
𝑥∈𝑃

𝑥

Minimal Path Sets can, like MCSs, be used as a starting point for improving
system reliability. Especially if the system has an MPS with few elements, improving
the reliability such an MPS may improve the reliability of many MCSs.

Analysis

Any algorithm to compute MCSs can also be used to compute MPSs. In simple
terms, we negate the fault tree (i.e., the top level event now represents system
non-failure) and the basic events (now representing non-failed components) and
find the minimal cut sets of this negated tree. I.e., we find the smallest sets of
functional components that do not cause system failure. Boolean logic such as
De Morgan’s laws allow us to negate the tree without introducing a NOT-gate
as follows: AND gates are replaced by OR gates, OR gates by AND gates, k/N
voting gates by (𝑁 − 𝑘 + 1)/𝑁 voting gates, and BEs by their complement (i.e.,
‘component failure’ by ‘no component failure’). The MCSs of this dual tree are the
MPSs of the original FT [BP75].

41

Both engines fail

E1 E2

Both engines fail

FE1 E2

Figure 2.9: Example partial FT of a two-engine airplane, showing the addition of
common cause ‘fuel’ (F) of two otherwise-independent engines (E1 and E2).

2.3.3 Common cause failures
Another qualitative aspect is the analysis of probable common cause failures
(CCF). These are separate failures that can occur due to a common cause that is
not yet listed in the tree. For example, if a component can be replaced by a spare
to avoid failure, both this component and its spare are in one cut set. If the spare
is produced by the same manufacturer as the component, a shared manufacturing
defect could cause both to fail at the same time. If such common causes are found
to be too likely, they should be modeled explicitly to avoid overestimating the
system reliability.

Analysis

CCF analysis is generally not possible using automated methods from the FT alone,
since CCF depend on external factors not modeled in the tree. Instead, experts
may try to determine whether any cut sets have multiple components that are
susceptible to a common cause failure. Such an analysis relies on expert insight,
and is often quite informal.

Common causes can be added to an FT by inserting them as BEs and replacing
the BEs they affect by OR-gates combining the CCF and the separate failure
modes. An example is shown in Figure 2.9, modeling a two-engine airplane. While
both engines can fail independently, the common cause ‘fuel’ can can both engines
to fail at the same time.

2.4 Quantitative analysis: Single-time
Quantitative analysis methods derive relevant numerical values for fault trees.
Stochastic measures are wide spread, as they provide useful information such
as failure probabilities. Importance measures indicate how important a set of

42

Model

R
eliability

A
vailability

M
T

T
F

F

M
T

T
F

M
T

B
F

M
T

T
R

E
N

F

Discrete-time + +
Continuous-time + + + +
Repairable cont.-time + + + + + + +

Table 2.2: Applicability of stochastic measures to different FT types

Author Measures Remarks Tool
[VGRH81] Reliability Valid for infrequent failures -
[BP75] Reliability Exact calculation based on MCS KTT [VN70]
[Rau93] Reliability Exact, Uses BDDs for efficiency -
[Ste86] Reliability Efficient for shared subtrees -
[BPMC01] Reliability Allows dependent events DBNet

[MPB+05b]
[DRGSR+09] Reliability Monte Carlo, allows arbitrary dis-

tributions
DRSIM
[DRGSR+09]

[AZ13] Reliability Fast Monte Carlo, requires spe-
cial hardware

-

[BP75] Availability Translation to reliability problem -
[DRGSR+09] Availability Monte Carlo, allows arbitrary dis-

tributions
DRSIM
[DRGSR+09]

[AA04] MTTF Assumes exponential failure dis-
tributions

-

[Sch98] MTBF Exact method based on boolean
expression

SyRePa
[Sch90]

[AA04] MTBF Assumes exponential failure dis-
tributions

-

Table 2.3: Summary of quantitative analysis methods for SFTs

43

components is to the reliability of the system. Moreover, the sensitivities of these
measures to variations in BE probabilities are important.

Moreover, stochastic measures can be used to decide whether it is safe to
continue operating a system with certain component failures, or whether the entire
system should be shut down for repairs.

We consider two types of FTs for quantitative analysis: Single-time FTs decorate
each basic event with a single probability of failure, abstracting away the time
at which the failure occurs. This is useful for systems with fixed, well-known
mission times (e.g., a rocket where the interesting measure is the probability that
it successfully reaches its goal, rather than how exactly when it fails).

Continuous-time FTs attach a time-dependent failure probability to each basic
event, allowing the computation of various additional measures, such as mean
time to failure or average uptime. Such FTs are useful for systems whose lifespan
is not fixed or known in advance (e.g., an airplane where the maximal lifespan
can actually be determined by computing the time when the failure probability
becomes unacceptably high).

The next section first describes some basic probability theory, and then provides
definitions and analysis techniques for several measures applicable to single-time
FTs. In particular, we treat the basic methods of bottom-up propagation and Monte
Carlo simulation, and the more advanced methods of binary decision diagrams
(BDDs) and Bayesian networks.

Preliminaries on probability theory

Given a finite or countable set 𝕊, a discrete 𝕊-valued random variable is a function
𝑋 ∶ Ω → 𝕊 that assigns an outcome 𝑠 ∈ 𝕊 to each stochastic experiment. The
function ℙ[𝑋 = 𝑠] denotes the probability that 𝑋 gets value 𝑠 and is called the
probability mass function. In this section, we consider Boolean random variables,
i.e., 𝑠 ∈ {0, 1} where 𝑠 = 1 denotes a failure, and 𝑠 = 0 a working FT element.
Note that if 𝑋1, 𝑋2,…𝑋𝑛 are random variables, and 𝑓 ∶ 𝕊𝑛 → 𝕊 is a function, then
𝑓(𝑋1, 𝑋2,…𝑋𝑛) is a random variable as well.

2.4.1 Modeling failure probabilities
We first consider the relative simple case of the single-time FT. Here, we do
not consider the evolution of a system over time: rather, a fixed time horizon is
considered, during which each component can fail only once. This is applicable to
many systems that have a well-known timeframe of interest, such as a rocket where
the designers know the probability of each component failing during launch, and it
is not interesting at exactly what time during this launch the rocket may fail.

We assume that the failures of the BEs are stochastically independent. If the
FT has shared subtrees, then the failures of the gates are not independent.

44

The basic process of our analysis is that we attach a failure probability to each
BE, and then combine these probabilities at the gates to obtain failure probabilities
for the gates and, eventually, for the entire tree. To explain how the probabilities are
combined, we state that each BE is either failed or not (with specified probabilities),
and that each gate is likewise failed or not depending on the states of its child
elements.

Formally, the BEs are equipped with a failure probability function 𝑃 ∶ BE →
[0, 1] that assigns a failure probability 𝑃(𝑒) to each 𝑒 ∈ BE, see Figure 2.11.
Then, each BE 𝑒 can be associated with random variable 𝑋𝑒 ∼ Alt(𝑃 (𝑒)); that is
ℙ(𝑋𝑒 = 1) = 𝑃(𝑒) and ℙ(𝑋𝑒 = 0) = 1 − 𝑃(𝑒).

Given a fault tree 𝐹 with BEs {𝑒1, 𝑒2,… , 𝑒𝑛}, the semantics from Definition 2
yields a stochastic semantics for each gate 𝑔 ∈ 𝐺, namely as the random variable
𝜋𝐹(𝑋𝑒1

,… ,𝑋𝑒𝑛
, 𝑔). We abbreviate the random variable for the top event of FT 𝐹

as 𝑋𝐹.
Note that under these stochastic semantics, it holds for all 𝑔 ∈ 𝐺 that

• 𝑋𝑔 = min𝑖∈𝐼(𝑔) 𝑋𝑖, if 𝑇 (𝑔) = AND,

• 𝑋𝑔 = max𝑖∈𝐼(𝑔) 𝑋𝑖, if 𝑇 (𝑔) = OR,

• 𝑋𝑔 = (∑
𝑖∈𝐼(𝑔)

𝑋𝑖) ≥ 𝑘, if 𝑇 (𝑔) = VOT(k/N).

Example 11 Figure 2.10 shows how these semantics work in an example FT.
We assume that some of the children have failed (denoted by a 1) and others have
not. Now, we can compute whether each gate has failed following the rules above.
For the lower AND-gate, since a single functioning child means the gate continues
to function, we select the minimal value of the children (0 in this example). For
the OR-gate the converse holds: a single failed child means the gate has failed.
We thus select the maximum of its children, which is here a 1. We therefore
conclude that this combination of failed BEs leads to a failure of the top gate.

2.4.2 Reliability
The reliability of a single-time FT is the probability that the failure does not occur
during the (modeled) life of the system [BP75].

Defintion 5 The reliability of a single-time FT 𝐹 is defined as Re(𝐹) = ℙ(𝑋𝐹 =
0).

The reliability of a fault tree 𝐹 with BEs 𝑒1,… , 𝑒𝑛 can be derived from the
non-stochastic semantics by using the stochastic independence of the BE failures:

45

1

0 1

11 0

Figure 2.10: Example of the semantics of the FT gates. The children are decorated
with 0 if they are functioning, or 1 otherwise. The value of the lower AND-gate is
then the minimum of its children (i.e., 0 in this example) and of the upper OR-gate
is the maximum (i.e., 1).

ℙ(𝑋𝐹 = 1) = ∑
𝑏1,...,𝑏𝑛∈{0,1}

ℙ(𝑋𝐹 = 1|𝑋𝑒1
= 𝑏1 ∧… ∧𝑋𝑒𝑛

= 𝑏𝑛)
⋅ℙ(𝑋𝑒1

= 𝑏1 ∧𝑋𝑒𝑛
= 𝑏𝑛)

= ∑
𝑏1,...,𝑏𝑛∈{0,1}

𝜋𝐹(𝑏1,… , 𝑏𝑛)𝑃𝑏1
(𝑒1) ⋅ … ⋅ 𝑃𝑏𝑛

(𝑒𝑛)
(2.1)

Here, 𝑃1(𝑒) = 𝑃(𝑒) and 𝑃0(𝑒) = 1−𝑃(𝑒). Computing (2.1) directly is complex.
Below, we discuss several methods to speed up the reliability analysis.

Bottom up analysis

For systems without shared BEs, failure probabilities can be easily propagated
from the bottom up, by using standard probability laws.

Example 12 Figure 2.11 shows an example of how such probabilities propagate.
Failure of the AND-gate requires all inputs to fail, which has a probability of
0.3⋅0.4⋅0.1 = 0.012. The OR-gate fails if any input fails, i.e., remains operational
only if all inputs do not fail. This has probability 1−(1−0.012)(1−0.1) = 0.1108.

In more detail, if we have an AND-gate𝐺 and the input distributions𝑋1, 𝑋2,… ,𝑋𝑛
of its children are all stochastically independent (i.e., there are no shared subtrees),
then we have

ℙ[𝑋AND(𝑋1,… ,𝑋𝑛) = 1] = ℙ[𝑋1 = 1 ∧… ∧𝑋𝑛 = 1]
= ℙ[𝑋1 = 1] ⋅ … ⋅ ℙ[𝑋𝑛 = 1]

46

0.1108

0.012 0.1

0.40.3 0.1

Figure 2.11: Example FT showing the propagation of failure probability in a
single-time FT.

For the OR, we use

ℙ[𝑋OR(𝑋1,… ,𝑋𝑛) = 1] = 1 − ℙ[𝑋OR(𝑋1,… ,𝑋𝑛) = 0]
= 1 − ℙ[𝑋1 = 0 ∧… ∧𝑋𝑛 = 0]
= 1 − (1 − ℙ[𝑋1 = 1]) ⋅ … ⋅ (1 − ℙ[𝑋𝑛 = 1])

The VOT(k/N) gate is slightly more involved. It is possible to rewrite the gate
into a disjunctions of all possible sets of 𝑘 inputs, obtaining

ℙ[𝑋VOT(k/N)(𝑋1,… ,𝑋𝑛) = 1] = ℙ[(𝑋1 = 1 ∧… ∧𝑋𝑘 = 1)
∨ (𝑋1 = 1 ∧… ∧𝑋𝑘−1 = 1 ∧𝑋𝑘+1 = 1)
…
∨ (𝑋𝑛−𝑘 = 1 ∧… ∧𝑋𝑛 = 1)]

however, expanding this into an expression of simple probabilities requires the
use of the inclusion-exclusion principle and results in very large expressions for
gates with many inputs where 𝑘 is neither very small nor close to 𝑁. It is more
convenient to recursively define the voting gate:

ℙ[𝑋VOT(0/N)(𝑋1,… ,𝑋𝑛) = 1] = 1
ℙ[𝑋VOT(N/N)(𝑋1,… ,𝑋𝑛) = 1] = ℙ[𝑋AND(𝑋1,… ,𝑋𝑛) = 1]

ℙ[𝑋VOT(k/N)(𝑋1,… ,𝑋𝑛) = 1] = ℙ [(𝑋1 = 1 ∧𝑋VOT(k-1/N-1)(𝑋2,… ,𝑋𝑛) = 1)

∨ (𝑋1 = 0 ∧ 𝑋VOT(k/N-1)(𝑋2,… ,𝑋𝑛) = 1)]

= ℙ[𝑋1 = 1] ⋅ ℙ[𝑋VOT(k-1/N-1)(𝑋2,… ,𝑋𝑛) = 1]
+ ℙ[𝑋1 = 0] ⋅ ℙ[𝑋VOT(k/N-1)(𝑋2,… ,𝑋𝑛) = 1)]

47

0.01

0.1

Figure 2.12: Example of an FT where bottom-up analysis fails due to non-
independent subtrees. Here, the AND-gate syntactically has two children, which
are actually the same BE. Since the rule for AND-gates is to multiply the failure
probabilities of its children, we obtain a probability of 0.01 for the gate. In reality,
of course, the failure probability of the gate should be the same as for the only
child, namely 0.1.

This approach does not work when BEs are shared, since the dependence between
subtrees is not taken into account. An extreme example of this is illustrated in
Figure 2.12.

Binary Decision Diagrams

As discussed in Section 2.3.1, BDDs can be used to encode FTs very efficiently. In
addition to the qualitative analysis already discussed, Efficient quantative analysis
is also possible.

To construct a BDD for computing system reliability, one can use a method
similar to Shannon decomposition [Rau93]:

ℙ(𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)) = ℙ(𝑥1)ℙ(𝑓(1, 𝑥2, ⋯ , 𝑥𝑛))
+ ℙ(¬𝑥1)ℙ(𝑓(0, 𝑥2, ⋯ , 𝑥𝑛))

An example of this approach is shown in Figure 2.13.
A caching mechanism is used to store intermediate results [Rau08], as interme-

diate formulas often occur is more than one subdiagram. This algorithm can be
applied even to non-coherent FTs, and has a complexity that is linear in the size of
the BDD.

Rare event approximation

For systems with shared events, the total unavailability of the system can also
be approximated by summing the unavailabilities of all the MCSs. This rare
event approximation [SVD+02] is reasonably accurate when failures are improbable.
However, as failures become more common and the probability of multiple cut

48

T

𝐺1

𝐺2
𝐸3

𝐸1 𝐸2

0.1 0.2

0.3

(a) Fault tree

𝐸1

𝐸2

0

𝐸3

1

1

1

0

0 0

1

0.1

0.2
0.3

(b) BDD with probabilities

𝐸1

𝐸2

0

0.3
1

0

0

1

0.1

0.2

(c) Substituting leaves for 𝐸3

𝐸1

0.06

0

0.3

1

0.1

(d) Substituting children for 𝐸2

Figure 2.13: Example of quantitative analysis of an FT via BDDs. First, we
transform the FT into a BDD following one of the methods described in Section
2.3.1 and decorate the variables with their probabilities. Next, we take the lowest
variable (𝐸3) and replace its probability by integrating its children (since the
children here have probabilities 0 and 1, we get (1 − 0.3) ⋅ 0 + 0.3 ⋅ 1 = 0.3. We
continue this process with the next variable (𝐸2), replacing its probability with
(1 − 0.2) ⋅ 0 + 0.2 ⋅ 0.3 = 0.06), and finally with the last remaining variable 𝐸1
obtaining (1 − 0.1) ⋅ 0.06 + 0.1 ⋅ 0.3 = 0.084 as the final probability.

49

sets failure increases, the approximation deviates more from the true value. For
example, a system with 10 independent MCSs, each with a probability 0.1, has an
unreliability of 0.65, whereas the rare event approximation suggests an unreliability
of 1.

Example 13 Considering Figure 2.2 and assuming all basic events have an
unavailability of 0.1, the probability of a failure of gate Mem can be approximated
as 𝑃fail(Mem) ≈ 𝑃fail({𝑀1,𝑀2})+𝑃fail({𝑀2,𝑀3})+𝑃fail({𝑀1,𝑀3}) = 0.03. As
the actual probability is 0.028, the approximation has slightly overestimated the
failure probability.

If some cut sets have a relatively high probability, this rare event approximation
is no longer accurate. If no component occurs in more than one cut set, the correct
probability may be calculated as 𝑃fail(𝐹) = 1 −∏𝐶∈𝑀𝐶(𝐹)(1 − 𝑃fail(𝐶)).

If some components are present in many of the cut sets, more advanced analysis
are needed. An exact solution may be obtained by using the inclusion-exclusion
principle to avoid double-counting events. Alternative methods may be more
efficient in special cases, such as the algorithm by [Ste86] which reduces repeated
work if the FT contains shared subtrees.

An algorithm using zero-suppressed BDDs [Rau08] closely resembles the cal-
culation of MCSs, but instead computes system reliability using the rare event
approximation. This method has a complexity linear in the size of the BDD, and
is more efficient than first computing the MCSs and then the reliability.

Bayesian Network analysis

In order to accurately calculate the reliability of a fault tree in the presence of
statistical dependencies between events, [BPMC01] present a conversion of SFT
to Bayesian Networks. A Bayesian Network [BG08] is a sequence 𝑋1, 𝑋2,… ,𝑋𝑛
of stochastically dependent random variables, where 𝑋𝑖 can only depend on 𝑋𝑗 if
𝑗 < 𝑖. Indeed, the failure distribution of a gate in a FT only depends on the failure
distributions of its children. Bayesian networks can be analyzed via conditional
probability tables ℙ[𝐵|𝐴𝑗] by using the law of total probability: for an event 𝐵,
and a partition 𝐴𝑗 of the event space, we have

ℙ[𝐵] = ∑
𝑗

ℙ[𝐵|𝐴𝑗]ℙ[𝐴𝑗]

For example, if 𝑋4 depends on 𝑋3 and 𝑋2, then partitioning yields ℙ[𝑋4 =
1] = ∑𝑖,𝑗∈{0,1} ℙ[𝑋4 = 1|𝑋3 = 𝑖 ∧ 𝑋2 = 𝑗]ℙ[𝑋3 = 𝑖 ∧ 𝑋2 = 𝑗]. The values
ℙ[𝑋4 = 1|𝑋3 = 𝑖 ∧ 𝑋2 = 𝑗] are given by conditional probability tables, and
ℙ[𝑋3 = 𝑖 ∧ 𝑋2 = 𝑗] are computed recursively.

50

T

X 0.1

0.40.3 0.1

(a) Fault tree

T

X A

CB D

ℙ(𝑇 = 1|𝐴 = 1 ∨ 𝑋 = 1) = 1
ℙ(𝐴 = 1) = 0.1
ℙ(𝑋 = 1|𝐵 = 𝐶 = 𝐷 = 1) = 1
ℙ(𝐵 = 1) = 0.3
ℙ(𝐶 = 1) = 0.4
ℙ(𝐷 = 1) = 0.1

(b) Resulting BN

Figure 2.14: The BN obtained by converting the FT in Figure 2.11 to a Bayesian
Network

Example 14 Figure 2.14 shows the conversion of a simple FT into a Bayesian
Network. The BEs A, B, and C are connected to top event T and assigned
reliabilities. Gates have conditional probabilities dependent on the states of their
inputs. All nodes can have only states 0 or 1 corresponding to operational and
failed, respectively. Classic inference techniques [BG08] can be used to compute
𝑃(𝑇 = 1), which corresponds to system unreliability. Alternatively, if it is known
that the system has failed, the inference can provide probabilities of each of the
BEs having failed.

In addition, Bobbio et al. [BPMC01] allow BEs with multiple states: Rather
than being either up or failed, components can be in different failure modes, such
as degraded operational modes, or a valve that is either stuck open or stuck closed.
The Bayesian inference rules work the same for multiple-state fault trees, except
that the random variables are no longer boolean but have multiple possible values,
resulting in larger conditional probability tables. Also, Bobbio et al. [BPMC01]
model common cause failures by adding a probability of a gate failing even when
not enough of its inputs have failed, although this has the disadvantage of making
the potential failure causes less explicit. Finally, gates can be ‘noisy’, meaning
they have a chance of failure. For example, the failure of one element of a set of
redundant components may have a small change of causing a system failure.

An important feature of Bayesian Network Analysis is that, not only can it
compute the probability of the top event given the leaves, it can compute the
probabilities of each of the leaves given the top event. This is very useful in fault
diagnosis [LP07, Lam10], where one knows that a failure has occurred, and wants
to find which leaves are the most like causes. Additional evidence can also be given,
such as certain leaves that are known not to have failed.

51

Monte Carlo simulation

Monte Carlo methods can also be used to compute the system reliability. Most
techniques are designed for continuous-time models [Cro71, DRGSR+09] or qual-
itative analysis [VN70], but adaptation to single-time models is straightforward.
Each component is randomly assigned a failure state based on its failure proba-
bility. The FT is then evaluated to determine whether the TE has failed. Given
enough simulations, the fraction of simulations that does not result in failure is
approximately the reliability.

2.4.3 Expected Number of Failures
Definition

The Expected Number of Failures (ENF) describes the expected number of occur-
rences of the TE within a specified time limit. This measure is commonly used to
evaluate systems where failures are particularly costly or dangerous, and where the
system will operate for a known period of time.

A major advantage of the ENF is that the combined ENF of multiple inde-
pendent systems over the same timespan can very easily be calculated, namely
ENF(S1,S2) = ENF(S1) + ENF(S2). For example, if a power company requests
a number of 40-year licenses to operate nuclear power stations, it is easy to check
that the combined ENF is sufficiently low.

Analysis

Since a single-time system can fail at most once, it is easy to show that the ENF
of such a system is equal to its unreliability. Let 𝑁𝐹 denote the number of failures
system 𝐹 experiences during its mission time, so that

𝔼[𝑁𝐹] = ∑
𝑖

𝑖 ⋅ ℙ[𝑁𝐹 = 𝑖]

= 0 ⋅ ℙ[𝑁𝐹 = 0] + 1 ⋅ ℙ[𝑁𝐹 = 1]
= 0 + ℙ[𝑋𝐹 = 1]
= Re(𝐹)

2.5 Quantitative analysis: Continuous-time
Where single-time systems treat the entire lifespan of a system as a single event,
it is often more useful to consider dependability measures at different times. For
example, an airplane manufacturer may be interested in knowing when the failure
probability exceeds a certain threshold, so that the airplane can be maintained or

52

taken out of service before that time. Provided adequate information is available,
continuous-time fault trees provide techniques to obtain such measures. This
section provides, after a description of the basic theory, definitions and analysis
techniques for these measures.

2.5.1 BE failure probabilities
Continuous-time FTs consider the evolution of the system failures over time. The
component failure behaviour is usually given by a probability function 𝐷𝑒 ∶ ℝ+ ↦
[0, 1], which yields for each BE 𝑒 and time point 𝑡, the probability that 𝑒 has failed
before time 𝑡 (i.e., 𝐷𝑒(𝑡) = ℙ[event 𝑒 fails before time 𝑡]).

In practise, the failure distributions can often be adequately approximated by
exponential distributions, and BEs are specified with a failure rate 𝑅 ∶ BE ↦ ℝ+,
such that 𝑅(𝑒) = 𝜆 ↔ 𝐷𝑒(𝑡) = 1 − e−𝜆𝑡.

If components can be repaired without affecting the operations of other com-
ponents, BEs have an additional repair distribution over time. Like failure dis-
tributions, repair distributions are often exponentially distributed and specified
using a repair rate RR ∶ BE ↦ ℝ+. More generally, BEs can be assigned repair
distributions as RD𝑒 ∶ ℝ+ ↦ [0, 1]. More complex and realistic models of repairs
are discussed in Section 4.3, this section does not consider such models.

Operational semantics. Like for the single-time case, we can use random
variables 𝑋𝑒 to describe failures of basic events, and derive a stochastic semantics
for the FT. However, due to the possibility of repair, it is helpful to introduce
some additional variables. Consider a BE 𝑒 with a failure distribution 𝐷𝑒 and
repair distribution RD𝑒. Now we take 𝐹𝑒,1, 𝐹𝑒,2,… as the relative failure times,
and 𝑄𝑒,1, 𝑄𝑒,2,… as the relative repair times, with 𝑄𝑒,1 = 0 for convenience. It
follows that ℙ[𝐹𝑒,𝑖 ≤ 𝑡] = 𝐷𝑒(𝑡) and ℙ[𝑄𝑒,𝑖 ≤ 𝑡] = RD𝑒(𝑡) for 𝑖 > 1. We can now
define the random variables 𝑋𝑒 and 𝑋𝑔.

For basic events, 𝑋𝑒(𝑡) is 1 if 𝑡 is some time after a failure, and before the
subsequent repair. We can rewrite this as follows:

𝑋𝑒(𝑡) = 1 iff

∃𝑖 [∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗) ≤ 𝑡 ∧ 𝑄𝑒,𝑖 +∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗) > 𝑡]

⇔ ∃𝑖 [∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗) ≤ 𝑡 ∧ 𝑡 − 𝑄𝑒,𝑖 < ∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗)]

⇔ ∃𝑖 [𝑡 − 𝑄𝑒,𝑖 ≤ ∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗) ≤ 𝑡]

53

For gates, 𝑋𝑔(𝑡) is defined analogously to the single-time case. To summarize,
we have the following definition:

Defintion 6

𝑋𝑒(𝑡) =
⎧{
⎨{⎩

1 if ∃𝑖 ∶ 𝑡 − 𝑄𝑒,𝑖 < ∑
𝑗<𝑖

(𝑄𝑒,𝑗 + 𝐹𝑒,𝑗) ≤ 𝑡

0 otherwise

𝑋𝑔(𝑡) =

⎧{{
⎨{{⎩

min𝑖∈𝐼(𝑔) 𝑋𝑖(𝑡) if 𝑇 (𝑔) = And
max𝑖∈𝐼(𝑔) 𝑋𝑖(𝑡) if 𝑇 (𝑔) = Or

(∑
𝑖∈𝐼(𝑔)

𝑋𝑖(𝑡)) ≥ 𝑘 if 𝑇 (𝑔) = 𝑉 𝑜𝑡𝑒(𝑘/𝑁)

Depending on the failure distributions, the random variables of the BEs can
have relatively easy distributions. For example, a BE with exponentially distributed
failures with rate 𝜆 has probability ℙ(𝑋𝑒(𝑡) = 0) = 1 − e−𝜆𝑡. The distributions of
the gates typically do not follow convenient distributions, as e.g. the maximum of
two exponentially distributed variables is not exponentially distributed.

Given the definition of 𝑋𝑖, classic statistical methods may be used to ana-
lyze the FT. For example, the availability of an FT 𝐹 is described as 𝐴(𝐹) =
lim𝑡→∞ 𝔼(𝑋𝐹(𝑡)), as explained in Section 2.5.3.

This method of analysis can be applied to FTs with arbitrary failure distributions,
even if the BEs are statistically dependent on each other. Unfortunately, the
algebraic expressions for the probability distributions often become too large and
complex to calculate, so other techniques have to be used for larger FTs.

2.5.2 Reliability
Definition

The reliability of a continuous-time FT 𝐹 is the probability that the system it
represents operates for a certain amount of time without failing. Formally, we
define a random variable 𝑌𝐹 = max {𝑡|∀𝑠<𝑡𝑋𝐹(𝑠) = 0} to denote the time of the
first failure of the tree. The reliability of the system up to time 𝑡 is then defined as
Re𝐹(𝑡) = ℙ(𝑌𝐹 > 𝑡).

Analysis

In continuous-time systems, the reliability in a certain time period can be calculated
by conversion into a single-time system, taking BE probabilities as the probability
of failure within the specified timeframe.

54

Monte Carlo methods can also be used to compute system reliability. In the
method by [DRGSR+09], random failure times and, if applicable, repair times
are generated according to the BE distributions. The system is simulated with
these failures, and the system reliability and availability recorded. Given enough
simulations, reasonable approximations can be obtained. Modifying the method to
record other failure measures is trivial.

For higher performance than conventional computer simulation, [AZ13] have
developed a method for programming a model of an FT into a special hardware chip
called a Field Programmable Gate Array, which can perform each MC simulation
very quickly.

2.5.3 Availability
Definition

The availability of a system is the probability that the system is functioning at a
given time. Availability can also be calculated over an interval, where it denotes
the fraction of that interval in which the system is operational [BP75]. Availability
is particularly relevant for repairable systems, as it includes the fact that the
system can become functional again after failure. For non-repairable systems, the
availability in a given duration may still be useful. The long-run availability always
tends to 0 for nontrivial non-repairable systems, as eventually some cut set will
fail and remain nonfunctional.

Defintion 7 The availability of FT 𝐹 at time 𝑡 is defined as 𝐴𝐹(𝑡) = 𝔼(𝑋𝐹(𝑡)).
The availability over the interval [𝑎, 𝑏] is defined as 𝐴𝐹([𝑎, 𝑏]) = 1

𝑏−𝑎 ∫ 𝑏
𝑎
𝑋𝐹(𝑡)𝑑𝑡.

The long-run availability is 𝐴𝐹 = lim𝑡→∞ 𝐴𝐹([0, 𝑡]) or equivalently, 𝐴𝐹 = lim𝑡→∞ 𝐴𝐹(𝑡)
when this limit exists.

Analysis

As the availability at a specific time is a probability, it is possible to treat the FT
as a single-time FT, by replacing the BE failure distribution with the probability
of being in a failed state at the desired time. The single-time reliability of the
resulting FT is then the availability of the original. Failure probabilities of the BEs
are usually easy to calculate depending on the failure time distribution, also for
repairable FTs [BP75].

In the case of exponentially distributed failure times (with rate 𝜆) and repair
times (with rate 𝜇), we obtain that the mean availability of the component is given
by 𝐴 = 𝜇

𝜆+𝜇 . An example of how this is used to compute the availability of an FT
is shown in Figure 2.15.

Long-term availability of a system can be calculated the same way, provided
the limiting availability of each BE exists. This is the case for most systems.

55

T

A

𝜆 = 1
𝜇 = 2

𝜆 = 1
𝜇 = 1

𝜆 = 3
𝜇 = 1

(a) Fault tree with failure rates 𝜆
and repair rates 𝜇

7
12

3
8

𝑈 = 1
3

𝑈 = 1
2 𝑈 = 3

4

(b) Corresponding FT with mean
unavailabilities 𝑈

Figure 2.15: Example of computing the mean availability of an FT with failure
and repair rates by first converting the rates to unavailabilities of BEs, and then
applying the bottom-up method.

Availability over an interval cannot be calculated so easily. Since this availability
is defined as an integral over an arbitrary expression, no closed-form expression
exists in the general case. Numerical integration techniques can be used should
this availability be needed.

2.5.4 Mean Time To Failure

Definition

The Mean Time To Failure (MTTF) describes the expected time from the moment
the system becomes operational, to the moment the system subsequently fails.

Formally, we introduce an additional random variable 𝑍𝐹(𝑡) denoting the
number of times the system has failed up to time 𝑡.

Defintion 8 To define 𝑍𝐹(𝑡), we first define the failure and repair times of the
gate:

𝑄𝑔,1 = 0
𝐹𝑔,𝑖 = min{𝑡 > 𝑄𝑔,𝑖|𝑋𝑔(𝑡) = 1} − 𝑄𝑔,𝑖

𝑄𝑔,𝑖 = min{𝑡 > 𝐹𝑔,𝑖−1|𝑋𝑔(𝑡) = 0} − 𝐹𝑔,𝑖−1

56

𝐸3

𝐸1 𝐸2

𝜆 = 100
𝜇 = 10000

𝜆 = 1
𝜇 = 1

𝜆 = 10
𝜇 = 10

Figure 2.16: Example FT of a repairable system where MTTF and MTTFF differ
significantly. Failure rates are denoted by 𝜆, repair rates by 𝜇.

We then define 𝑍𝑔(𝑡) of a gate 𝑔 as:

𝑍𝑔(𝑡) = max{𝑖 ∈ ℕ∣∑
𝑗≤𝑖

(𝑄𝑔,𝑗 + 𝐹𝑔,𝑗) ≤ 𝑡}

Now 𝑍𝐹(𝑡) = 𝑍𝑇(𝑡) with 𝑇 being the TE of FT 𝐹.

The MTTF up to time 𝑡 is then MTTF𝐹(𝑡) =
𝐴𝐹(𝑡)⋅𝑡
𝑍𝐹(𝑡) . The long-run MTTF is

MTTF𝐹 = lim𝑡→∞ MTTF𝐹(𝑡).
In repairable systems the time to failure depends on the system state when it

becomes operational. The first time, all components are operational, but when
the system becomes operational due to a repair, some components may still be
non-functioning. This difference is made explicit by distinguishing between Mean
Time To First Failure (MTTFF) and MTTF.

To illustrate this difference, consider the FT in Figure 2.16. Here, failures will
initially be caused primarily by component 3, resulting in an MTTFF slightly less
than 1

10 . In the long run, however, component 1 will mostly be in a failed state,
and component 2 will cause most failures. This results in a long-run MTTF of
approximately 1.

While MTTF and availability are often correlated in practise, only the MTTF
can distinguish between frequent, short failures and rare, long failures.

Analysis

Many failure distributions have expressions to immediately calculate the MTTF of
components. For example, a component with exponential failure distribution with
rate 𝜆 has MTTF 1

𝜆 . For gates, however, the combination of multiple BE often

57

does not have a failure distribution of a standard type, and algebraic calculations
produce very large equations as the FTs become more complex.

[AA04] have shown that the Vesely failure rate [Ves70] can be used to approxi-
mate the MTTF, and can do so efficiently even for larger trees.

2.5.5 Mean Time Between Failures
Definition

For repairable systems, the Mean Time Between Failures (MTBF) denotes the
mean time between two successive failures. It consists of the MTTF and the Mean
Time To Repair (MTTR). In general, it holds that MTBF = MTTR + MTTF.

The MTBF is defined similarly to the MTTF except ignoring the unavailable
times. Formally, MTBF𝐹(𝑡) = 𝑡

𝑍𝐹(𝑡) , and in the long run MTBF𝐹 = lim𝑡→∞
MTBF𝐹(𝑇) when this limit exists.

The MTBF is useful in systems where failures are particularly costly or danger-
ous, unlike availability which focuses more on total downtime. For example, if a
railroad switch failure causes a train to derail, the fact that an accident occurs is
much more important than the duration of the subsequent downtime.

The MTTR is often less useful, but may be of interest if the system is used in
some time-critical process. For example, even frequent failures of a power supply
may not be very important if a battery backup can take over long enough for
the repair, while infrequent failures that outlast the battery backup are more
important.

Analysis

An exact value for the MTBF may be obtained using the polynomial form of
the FT’s boolean expression, as described by [Sch98]. The Vesely failure rate
approximation by [AA04] can also be used.

2.5.6 Expected Number of Failures
Definition

Like in a single-time FT, the ENF denotes the expected number of times the top
event occurs within a given timespan. For repairable systems, it is possible for
more than one failure to be expected.

Analysis

The ENF of a non-repairable system is equal to its unreliability. The ENF of a
repairable system can be calculated from the MTBF using the equation ENF(𝑡) =

𝑡
MTBF(𝑡) , or using simulation.

58

Author Measure Remarks
Various Cut set size Very rough approximation
Various Cut set failure measure Specific to each failure measure
[Ves70] Cut set failure rate Applicable to exponential distributions
[Bir68] Structural importance Based only on FT structure
[Jac83] Structural importance Also for noncoherent systems
[AB03] Structural importance Also includes repairs
[CM11] Init. & Enab. importance For FTs with initiating and enabling events
[HL93] Joint Reliability Importance Interaction between pairs of events
[Arm95] Joint Reliability Importance Also for dependent events
[LJ07] Joint Reliability Importance Also for noncoherent systems
[Fus75] Primary Event Importance BE contribution to unavailability
[DR01] Risk Reduction Factor Maximal improvement of reliability by BE

Table 2.4: Summary of importance measures for cut sets and components

2.5.7 Sensitivity analysis
Quantitative techniques produce values for a given FT, but it is often useful to
know how sensitive these values are to the input data. For example, if small changes
in BE probabilities result in a large variation in system reliability, the calculated
reliability may not be useful if the probabilities are based on rough estimates. On
the other hand, if the reliability is very sensitive to one particular component’s
failure rate, this component may be a good candidate for improvement.

If the quantitative analysis method used gives an algebraic expression for the
failure probability, it may be possible to analyze this expression to determine the
sensitivity to a particular variable. One method of doing so is provided by [Rus85].

In many cases, however, sensitivity analysis is performed by running multiple
analyses with slightly different values for the variables of interest.

If the uncertainty of the BE probabilities is bounded, an extension to FT called
a Fuzzy Fault Tree can be used to analyze system sensitivity. This method is
explained in Section 4.1.

2.6 Importance measures
In addition to computing reliability measures of a system, it is often useful to
determine which parts of a system are the biggest contributors to the measure.
These parts are often good candidates for improving system reliability.

In FTs, it is natural to compute the relative importances of the cut sets, and
of the individual components. Several measures are described below, and the
applicability of these measures is summarized in Table 2.4.

59

MCS size

An ordering of minimal cut sets can be made based on the number of components
in the set. This ordering approximately corresponds to ordering by probability,
since a cut set with many components is generally less likely to have all of its
elements fail than one with fewer components. Small Cut sets are therefore good
starting points for improving system reliability.

Stochastic measures

For a more exact ordering, the stochastic measures described above can also be
calculated for each cut set, and used to order them.

For systems specified using exponential failure distributions, the probability
𝑊(𝐶, 𝑡)Δ𝑡 of cut set 𝐶 causing a system failure between time 𝑡 and Δ𝑡 is approx-
imately the probability that all but one BE of 𝐶 have failed at time 𝑡 and that
the final component fails within the interval Δ𝑡. If we write the failure rate of a
component 𝑥 as 𝜆𝑥, and we write Re𝑥(𝑡) for the reliability of 𝑥 up to time 𝑡, the
probability of cut set 𝐶 causing a failure in a small interval can be approximated as

𝑊(𝐶, 𝑡)Δ𝑡 ≈ ∑
𝑥∈𝐶

(𝜆𝑥Δ𝑡 ∏
𝑦∈(𝐶\{𝑥})

Re𝑦(𝑡))

Cancelling the Δ𝑡 on both sides gives

𝑊(𝐶, 𝑡) ≈ ∑
𝑥∈𝐶

(𝜆𝑥 ∏
𝑦∈(𝐶\{𝑥})

Re𝑦(𝑡))

This approximation assumes that the all components in 𝐶 failing causes a system
failure, which requires that no other cut set has failed before 𝐶. Thus, the
approximation is only valid if the failure rates of all other cut sets is suitably low.
If this is the case, it can be used to order cut sets by the rate with which they
cause system failures. The full derivation of this approximation is provided by
[VGRH81].

Structural importance

Other than ranking by failure probability, several other measures of component
importance have been proposed. [Bir68] defines a system state as the combination
of all the states (failed or not) of the components. A component is now defined as
critical to a state if changing the component state also changes the TE state. The
fraction of states in which a component is critical is now the Birnbaum importance
of that component.

60

Formally, an FT with 𝑛 components has 2𝑛 possible states, corresponding to
different sets 𝜒 of failed components. A component 𝑒 is considered critical in a
state 𝜒 of FT 𝐹 if 𝜋𝐹(𝜒 ∪ {𝑐}) ≠ 𝜋𝐹(𝜒\{𝑐}).

[Jac83] extended this notion to noncoherent systems, in a way that does not
lead to negative importances when component failure leads to system repair. An
additional refinement was made by [AB03], to also consider the criticality of a
component being repaired.

The Vesely-Fussell importance factor VF𝐹(𝑒) is defined as the fraction of
system unavailability in which component 𝑒 has failed [Fus75]. That is, given that
a set of components 𝑆 has failed causing the FT to fail, what is the probability
that 𝑒 is one of the failed components. Formally, VF𝐹(𝑒) = 𝑃(𝑒 ∈ 𝑆|𝜋𝐹(𝑆) = 1).
An algorithm to compute this measure is given by [DR01].

The Risk Reduction Worth RRF𝐹(𝑒) is the highest increase in system reliability
that can be achieved by increasing the reliability of component 𝑒. It may be
calculated using the algorithm by [DR01].

Initiating and enabling importance

In systems where some components have a failure rate and others have a failure
probability, [CM11] introduce a new importance measure that separately measures
the importance of initiating events that actively cause for the TE, and enabling
events that can only fail to prevent the TE.

To illustrate this distinction, consider an oil platform. If the event of interest
is an oil spill, the event ‘burst pipe’ would be an initiating event, since this event
leads to an oil spill unless something else prevents it. The event ‘emergency valve
stuck open’ is an enabling event. It does not by itself cause an oil spill, it only fails
to prevent the burst pipe causing one. The distinction is not usually explicit in the
FT, since both these events would simply be connected by an AND gate.

Initiating events often occur only briefly, and either cause the TE or are quickly
‘repaired’. Repair in this case can also include the shutdown of the system, since
that would also prevent the catastrophic TE. In contrast, enabling events may
remain in a failed state for along time.

Due to this difference, overall reliability of such a system can be improved by
reducing the failure frequency of initiating events, or by reducing the frequency or
increasing the repair rate of enabling events. This is one reason for the distinction
between the two in the analysis.

Joint importance

To quantify the interactions between components, [HL93] developed the Joint
Reliability Importance and its dual, the Joint Failure Importance. These measures
place greater weight on pairs of components that occur together in many cut

61

sets, such as a component and its only spare, than on two relatively independent
components. This may be useful to identify components for which common cause
failures are particularly important.

[Arm95] extends this notion of the Joint Reliability Importance to include
statistical dependence between the component failures, and proves that the JRI is
always nonzero for certain classes of systems. Later, [LJ07] determines that the
JFI can also be used for noncoherent systems.

2.7 Tool support
2.7.1 Commercial tools
In addition to the academic methods described in this section, commercial tools
exist for FTA. The algorithms used in these tools are usually well documented.
Several of these programs also allow the analysis of dynamic FTs, which will be
explained in Chapter 3.

This subsection describes several commonly used commercial FTA tools. This
list is not exhaustive, nor intended as a comparison between the tools, but rather
to give an overview of the capabilities and limitations of such tools in general.

A.L.D. RAM Commander A.L.D. produces an FTA program as part of its
RAM Commander toolkit [ALD]. This program can automatically generate FTs
from FMECAs, FMEAs, or RBDs, and allows the user to generate a new FTA.
It supports continuous and single-time FT, and can combine different failure
distributions in one FT. Repairs are also supported.

The only supported qualitative analysis is the generation of minimal cut sets.
For qualitative analysis, the tool can compute reliability and expected number

of failures up to a specified time bound, and availability at specific times as well as
long-run mean availability. Failure frequency up to a given time is also supported.
Moreover, the program can compute the importances and sensitivities of the BEs.

EPRI CAFTA CAFTA (Computer Aided Fault Tree Analysis) [EPR] is a tool
developed by EPRI for FTA. It supports single- and continuous-time FTs, including
non-coherent FTs and the PAND gate from dynamic FTs. Continuous-time BEs can
have various probability distributions, including normal and uniform distributions.
Several models of CCF are also included.

CAFTA can compute cut sets. For quantitative analysis, the program can
compute reliability, and several importance and sensitivity measures.

Isograph FaultTree+ The Isograph FaultTree+ program [Iso] is one of the
most popular FTA tools on the market. It performs quantitative and qualitative

62

fault tree analysis. It can analyze FTs with various failure distributions, and can
replace BEs by Markov Chains to allow the user to arbitrarily closely approximate
any distribution [JT88]. Dynamic FTs and Non-coherent FTs including NOT gates
can also be analyzed.

Qualitatively, the program supports minimal cut set determination and the
analysis of common cause failures. A static analysis is also supported for errors
such as circular dependencies.

All the quantitative measures described in Section 2.5 can be calculated by
FaultTree+. The program can also determine confidence intervals if uncertainties
in the BE data are known. Without such information, sensitivity analysis can still
be performed by automatic variation of the failure and repair rates. Importance
measures that can be computed over the BE are the Fussell-Vesely, Birnbaum,
Balow-Proschan, and Sequential importances.

ITEM ToolKit The ITEM ToolKit by ITEM software [ITEM] supports FTA,
as well as other reliability and safety analyses, such as Reliability Block Dia-
grams [DP07].

This program uses Binary Decision Diagrams for its analysis, but can also
perform an approximation method. The analysis supports non-coherent FTs, and
several different failure models for BEs.

Qualitative analysis can determine minimal cut sets, and has four methods for
common cause failure analysis.

Quantitative analysis supports reliability and availability computation. Uncer-
tainty analysis of the results can be performed if input uncertainties are known, and
sensitivity analysis even if they are not. The program can also compute importance
measures, although for which measures is not specified.

OpenFTA The open-source tool OpenFTA [Ope] can perform basic FTA. It
only supports non-repairable FTs, and allows only single-time BEs and BEs with
exponentially distributed failure times.

OpenFTA supports minimal cut set generation, deterministic analysis of system
reliability, and Monte Carlo simulation to determine reliability.

ReliaSoft BlockSim ReliaSoft’s BlockSim program [Rel] can analyze Reliability
Block Diagrams [DP07] and FTs.

Quantitative analysis can determine exact reliability of the system, including the
changes in reliability over time. If information about possible reliability improve-
ments is available, the program can compute the most cost-effective improvement
strategy to obtain a given reliability.

Availability of repairable systems can be approximated using discrete event
simulation. Given information about repair costs and spare part availability,

63

the analysis can determine the most effective maintenance strategy for a cost or
availability requirement, as well as the optimal spare parts inventory.

BlockSim supports the determination of minimal cut sets, but does not appear
to offer other quantitative analysis options.

PTC Windchill FTA The Windchill FTA program by PTC [PTC] allows the
design and analysis of fault trees and event trees, including dynamic FTs. The
program supports non-coherent FTs, as well as different failure distributions for
the BEs.

Windchill FTA can compute minimal cut sets, as well as several methods for
determining common cause failures.

Qualitative measures than can be computed include reliability, availability, and
failure frequency. These can be determined using exact computations or by Monte
Carlo simulation. The Birnbaum, Fussell-Vesely, and Criticaly importances of BEs
can also be computed.

RiskSpectrum FTA The software suite RiskSpectrum [LRCRS] by Lloyd’s
Register Consulting includes an FTA tool. The overall suite is designed for
probabilistic safety assessment, and includes tools for FMEA and human reliability
analysis. RiskSpectrum FTA supports static fault trees with CCFs.

The analysis tool can perform qualitative analysis producing MCSs, and quan-
titative analysis including reliability and availability, as well as sensitivity and
importance measures and time-dependent analysis.

2.8 Conclusion
This chapter has given an extensive overview of the formalism of fault trees and
the various methods used to analyze them. We have shown how fault trees are used
to model the failure behaviour of complex systems, and to analyze such systems
for both qualitative and quantitative properties.

Qualitatively, fault tree analysis computes cut sets and path sets. These are
used both to validate the tree, and to identify potential weaknesses in the system
design where few or even single faults could lead to system failure.

Quantitatively, a wide range of metrics is available. Some, like reliability, are
applicable to any system and are widely supported by analyses tools. Others, like
availability, are only applicable or useful in more specific contexts (e.g., repairable
systems). In any case, a large variety of analysis techniques and tools exist to
compute these metrics, each with its own benefits and drawbacks.

We further provide information on several software tools, both academic and
commercial, that can perform fault tree analysis.

64

This chapter treats the widely-used and well-known static (or, standard) fault
trees. The next chapter will describe the less well-known but still relatively standard
dynamic fault trees, and Chapter 4 surveys a wide range of other extensions and
variants, which are not (yet) very standardized. Further chapters will explain the
particular extension of the Fault maintenance tree, developed for this thesis.

65

66

Chapter 3

Dynamic Fault Trees

The previous chapter discussed static fault trees, which describe how combinations
of failures of components (basic events) lead to failures of subsystems (gates) and
eventually the entire system. Such static FTs can only model systems in which a
combination of failed components results in a system failure, regardless of when
each of those component failures occurred. In reality, many systems can survive
certain failure sequences while failing if the same components fail in a different
order. For example, if a system contains a switch to alternate between a component
and its spare, then the failure of this switch after it has already activated the spare
does not cause a failure.

Dynamic fault trees (DFTs) were developed by, among others, NASA [DBB90]
to model such temporal dependencies in FTs. More specifically, DFTs introduce
additional gates (most notably the priority-AND (PAND) and SPARE gates) whose
behaviour depends on the order in which their children fail.

The increased expressive power of DFTs also necessitates more advanced analysis
techniques. Qualitative analysis can be performed similarly to that of static FTs
to obtain cut sets, but also to obtain cut sequences incorporating the temporal
relationships between events. Quantitatively, a wide range of techniques has been
developed to compute measures such as reliability and availability. Apart from
some techniques using highly different approaches, many techniques fall into one of
two broad categories:

• Exact techniques that translate the DFT into a more low-level formalism
such as Markov chains [DBB90] or dynamic Bayesian networks [MPBCR08]
from which the measure can be computed using standard algorithms.

• Simulation techniques that draw a large number of samples from the proba-
bility distribution described by the DFT, and estimate the desired measure
with statistical confidence bounds.

Tables 3.1 and 3.2 list the qualitative and quantative analysis techniques
described in this chapter.

Most techniques described in this chapter apply only to non-repairable DFTs.
Some extensions to DFTs, such as the one by Boudali et al. [BCS07a] allow repairs,

67

Author Method Remarks
Tang et al. [TD04] Cut sets Postprocessing to convert cut sets to cut sequences
Liu et al. [LXZ+07, LZX+07] Composition Reduces work for shared components
Zhang et al. [ZZLL11] Cut sequences More compact representation of cut sequences
Chaux et al. [CRL+13] Language theory Allows repairs up to first TE occurrence
Merle et al. [Mer10] Algebraic Also allows quantitative analysis
Rauzy [Rau11] ZBDD Starting point for other analyses

Table 3.1: Overview of DFT qualitative analysis methods

Ws

𝐶1
SPARE

𝑀1

𝐶2
SPARE

𝑀2

𝑀3

FDEP

PS

Figure 3.1: Example of a DFT, equivalent to subtree Ws in Figure 2.2 (page 24).

although the exact semantics of repairable DFTs are neither well-described, nor
agreed on by the different extensions.

Origin of this chapter This chapter is expanded from Chapter 3 of:

• Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. Computer Science Review,
15–16:29–62, 2015. doi: 10.1016/j.cosrev.2015.03.001, issn: 1574-0137.

Organization of this chapter Since a DFT considers temporal behaviour, the
methods used for the analysis of static FT cannot be directly used to analyze
DFT. An overview of the various quantitative methods is shown in Table 3.2. The
qualitative methods are listed in Table 3.1. Details of qualitative and quantitative
analysis methods are given in Sections 3.2 and 3.3. We end with our conclusions in
Section 3.4.

68

https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001

A
ut

ho
r

M
et

ho
d

Repairs

Reliability

Availability

Other

R
em

ar
ks

T
oo

l
su

pp
or

t
D
ug

an
et

al
.[
D
B
B
90
]

M
ar
ko
v
C
ha

in
+

+
+

Su
ffe

rs
fr
om

st
at
e-
sp
ac
e
ex
pl
os
io
n

G
al
ile
o
[S
D
C
99
]

B
ou

da
li
et

al
.[
B
C
S0

7a
]

I/
O

IM
C

+
+

+
+

Le
ss

st
at
e-
sp
ac
e
ex
pl
os
io
n
fo
r
m
os
t
m
od

el
s

C
O
R
A
L
[B
C
S0

7b
],

D
FT

C
al
c
[A

B
vd

B
+
13
]

Vo
lk

et
al
.[
V
JK

18
]

M
ar
ko
v
au

to
m
at
a

+
+

+
Va

rio
us

op
tim

iz
at
io
ns

to
re
du

ce
st
at
e-
sp
ac
e

ST
O
R
M

[D
JK

V
17
]

&
So

un
d
ov
er
-a

nd
un

de
ra
pp

ro
xi
m
at
io
ns

C
od

et
ta
-R

ai
te
ri

[C
R
FI

V
04
]

Pe
tr
iN

et
s

+
+

+
In
te
rm

ed
ia
te

m
od

el
sm

al
le
r
th
an

M
ar
ko
v
C
ha

in
D
FT

2G
SP

N
[C
R
05
a]

Pu
llu

m
an

d
D
ug

an
[P
D
96
]

M
od

ul
ar
iz
at
io
n

+
Fa

st
w
he
n
FT

ha
s
sm

al
ld

yn
am

ic
su
bt
re
es

SH
A
D
E

Tr
ee

[P
D
96
],

D
IF

Tr
ee

[D
V
G
97
]

Lo
ng

et
al
.[
LS

H
00
]

SF
L

+
+

N
o
pr
ac
tic

al
al
go
rit

hm
fo
r
re
al
ist

ic
D
FT

s
H
an

et
al
.[
H
G
H
11
]

A
pp

ro
xi
m
at
io
n

+
R
ea
so
na

bl
e
ac
cu
ra
cy

ba
se
d
on

ex
pe

rim
en
ts

Li
u
et

al
.[
LX

L+
10
]

Pr
ob

.
di
st
r.

+
Fo

r
D
FT

s
w
ith

la
rg
e
st
at
ic

su
bt
re
es
,a

pp
ro
x.

Ye
vk

in
[Y
ev
11
]

M
od

ul
ar
iz
at
io
n

+
R
ed
uc
es

co
m
pl
ex
ity

of
so
m
e
sp
ec
ifi
c
su
bt
re
es

A
m
ar
ie

t
al
.[
A
G
E0

3]
A
pp

ro
xi
m
at
io
n

+
R
eq
ui
re
s
tr
ee

fo
llo

w
in
g
ce
rt
ai
n
ru
le
s

M
on

ta
ni

et
al
.[
M
PB

05
a]

D
B
N

+
+

N
ot

ex
ac
t,
al
lo
w
s
de
pe

nd
en
t
B
E

R
ad

yb
an

[M
PB

05
a]

[P
B
C
R
M
07
,M

PB
C
R
08
]

B
ou

da
li
an

d
D
ug

an
[B
D
05
]

D
B
N

+
+

N
ot

ex
ac
t,
al
lo
w
s
m
ul
ti-
st
at
e,

de
pe

nd
en
t
B
E

R
on

gx
in
g
et

al
.[
R
G
D
10
]

B
D
D

&
D
B
N

+
Effi

ci
en
t
fo
r
D
FT

s
w
ith

st
at
ic

su
bt
re
es

G
ra
ve
s
et

al
.[
G
H
K

+
07
]

D
B
N

+
In
co
rp
or
at
es

ga
te

fa
ilu

re
da

ta
M
o
[M

o1
4]

M
D
D

+
R
ed
uc
es

st
at
e-
sp
ac
e
ex
pl
os
io
n

N
ie

t
al
.[
N
T
X
13
]

A
lg
eb
ra
ic

+
Fi
nd

s
M
C
S
an

d
pe

rf
or
m
s
qu

an
tit

at
iv
e
an

al
ys
is

D
ur
ga

R
ao

et
al
.[
D
R
G
SR

+
09
]

M
on

te
C
ar
lo

+
+

+
+

A
llo

w
s
in
de
pe

nd
en
tly

re
pa

ira
bl
e
co
m
po

ne
nt
s

B
ou

da
li
et

al
.[
B
N
S0

9]
M
on

te
C
ar
lo

+
+

+
+

A
llo

w
s
no

n-
M
ar
ko
vi
an

sy
st
em

s
D
FT

Si
m

[B
N
S0

9]
Li
an

t
et

al
.[
LY

ZL
09
]

M
on

te
C
ar
lo

+
+

+
+

R
eq
ui
re
s
cu
t
se
ts
,a

llo
w
s
re
pa

irs
Zh

an
g
et

al
.[
ZM

FW
09
]

M
on

te
C
ar
lo

+
+

+
+

Tr
an

sf
or
m
s
to

Pe
tr
iN

et
D
R
SI
M

[D
R
G
SR

+
09
]

A
lie
e
et

al
.[
A
Z1

1]
M
on

te
C
ar
lo

+
+

+
+

H
ar
dw

ar
e
m
et
ho

d
fo
r
fa
st

sim
ul
at
io
ns

R
ui
jt
er
s
et

al
.[
R
R
dB

S1
7]

M
on

te
C
ar
lo

+
+

Im
po

rt
an

ce
sa
m
pl
in
g
to

im
pr
ov
e
ac
cu
ra
cy

FT
R
ES

[R
R
dB

S1
7]

R
aj
ab

za
de
h
et

al
.[
R
J1

0]
H
ar
dw

ar
e

+
+

+
N
ot

ex
ac
t,
un

te
st
ed

fo
r
la
rg
e
m
od

el
s

T
ab

le
3.

2:
O
ve
rv
ie
w

of
D
FT

qu
an

tit
at
iv
e
an

al
ys
is

m
et
ho

ds

69

3.1 Structure
The structure of a DFT is very similar to that of a static FT (described in Chapter
2), with the addition of several gate types shown in Figure 3.2. The new gates are:

PAND (Priority AND) Output event occurs if all inputs occur from left to right.

FDEP (Function DEPendency) Output is a dummy and never occurs, but when
the trigger event on the left occurs, all the other input events also occur.

SPARE Represents a component that can be replaced by one or more spares.
When the primary unit fails, the first spare is activated. When this spare
fails, the next is activated, and so on until no more spares are available. Each
spare can be connected to multiple Spare gates, but once activated by one it
cannot be used by another. By convention, spare components are ordered
from left to right.

Example 15 An example of a DFT is shown in Figure 3.1. This DFT has the
same cut sets as the subtree rooted at G3 of Figure 2.2, but has a more intuitive
informal description: 𝑀3 is clearly shown as a shared spare for 𝑀1 and 𝑀2.
Also, the system does not directly depend on the power supply PS. Instead, the
failure of PS triggers a failure of both CPUs, which more accurately describes the
system and eliminates the shared event at the expense of introducing a shared
trigger.

BEs can have an additional parameter 𝛼 called the dormancy factor. This
parameter is typically a value between 0 and 1, and reduces the failure rate of the
BE to that fraction of its normal failure rate if the BE is an inactive input to a
SPARE gate [BCS07c]. For example, a spare tire will not wear out as fast as one
that is in operation. For BEs that are not inputs to a SPARE gate, 𝛼 has no effect.
Dormancy factors greater than 1 can be specified, but are rarely useful as they
would indicate that a component fails faster when it is not in use than when it is
being used.

(a) PAND gate (b) FDEP gate (c) SPARE gate

Figure 3.2: Images of the new gates types in a DFT

70

The introduction of the PAND and SPARE gates means that a DFT is not
generally coherent. For example, an increase in the failure rate of the right input
to a PAND can increase the reliability of the gate. In systems exhibiting this
behaviour, overall reliability is often improved by forcing a component to fail
immediately when the system is started, indicating that such non-coherence is
often indicative of a modeling error or suboptimal system design.

In non-repairable DFTs, the FDEP gate can be removed by replacing each of
its children by an OR gate of that child and the FDEP trigger. In repairable DFTs,
the applicability of this approach depends on the definition of the FDEP gate: If
failures triggered by the FDEP require separate repairs, the transformation is not
correct. If repair of the FDEP trigger also restores the triggered components to
operation, the transformation does preserve the behaviour.

Defintion 9 A DFT is a tuple DF = ⟨BE, 𝐺, 𝑇 , 𝐼,DORM ⟩, where BE and 𝐺
are the same as in a static FT (and we write 𝐸 = BE ∪ 𝐺). The function
𝑇 denotes the gate type, but now 𝑇 ∶ 𝐺 ↦ DGT , with the set of dynamic
gates 𝐷𝐺𝑇 = GateTypes ∪ {FDEP,PAND,SPARE}. 𝐼 is replaced by an input
function: 𝐼 ∶ 𝐺 ↦ 𝐸∗ yielding an ordered sequence of inputs to each gate.
DORM ∶ 𝐵𝐸 ↦ ℝ≥0 provides the dormancy factor for each the BEs.

Since the output of the FDEP gate is a dummy output and not relevant to the
behaviour of the FT, it is often useful to use a pruned input function which does
not include FDEP inputs or outputs [BCS10].

Some types of DFT have additional gates, which are not included in the
description above. These are:

Hot spare Special case of SPARE gate, where the dormancy factor of the spares
is 1, i.e., the spare failure rate is the same as the normal failure rate [DBB90].

Cold Spare Special case of SPARE, with a dormancy factor of 0, i.e., spares
cannot fail before activated [DBB90].

Priority OR Fails when the leftmost input fails before the others [WP09]. Can
be replaced by a PAND and an FDEP.

Sequence enforcer Prohibits failures of inputs until all inputs to the left have
failed [BCS07a]. Can be replaced by (cold) SPARE provided the inputs are
not shared with other gates and failure times are exponentially distributed.

One-shot PDEP Special case of the FDEP gate, where the occurrence of the
trigger event has some probability of causing a failure of the dependent events
[PCRM10].

Persistent PDEP Special case of the FDEP gate, where the occurrence of the
trigger event causes an increase in the failure rates of the dependent events
[PCRM10].

71

We note that this chapter describes the general behaviour of DFTs, as agreed
on by most tools. The exact details of some DFT constructs differ between
implementations, as outlined by Junges et al. [JGKS16].

3.2 Qualitative analysis
A simple form of qualitative analysis of a DFT can be performed by employing the
same techniques as used for SFTs; namely by replacing the PAND and SPARE
gates by AND gates, and the FDEP gates by OR gates. This analysis will not
capture the temporal requirements of the tree. Nonetheless, the cut sets can be
used to improve system reliability, since at least one cut set must completely fail
for a system failure to occur.

Example 16 In Figure 3.3, this method replaces the PAND gate on the right by
an AND gate. The resulting cut sets are {𝑃 ,𝐵} and {𝑆, 𝑃}. These cut sets can
be useful, as preventing the failures of every cut set still prevents system failure.
However, unlike in the SFT, the failure of {𝑆, 𝑃} does not necessarily cause a
system failure, depending on the ordering of the failures.

To capture these temporal requirements, Tang et al. [TD04] introduced the
notion of ‘cut sequences’ as the dynamic counterpart to cut sets. A cut sequence
is a sequence of failures which cause a system failure. Formally, a sequence
⟨𝑒1, 𝑒2,… , 𝑒𝑛⟩ is a cut sequence of the DFT 𝐷 if, given any failure times 𝐹𝑒1

<
𝐹𝑒2

< ⋯ < 𝐹𝑒𝑛
, the top level event occurs at or before 𝐹𝑒𝑛

.
Tang et al. [TD04] also showed that these cut sequences can be determined by

replacing the dynamic gates by static gates, determining the minimal cut sets, and
then adding any sequencing requirements to the cut sets.

Example 17 The DFT in Figure 3.3 has cut sequence set (CSS) {⟨𝑆, 𝑃 ⟩, ⟨𝑃 ,𝐵⟩,
⟨𝐵, 𝑃 ⟩}. The sequence ⟨𝑃 , 𝑆⟩ is not a cut sequence since the failure of 𝑆 after 𝑃
does not trigger the PAND gate.

It was pointed out by Junges et al. [JGKS16] that cut sequences can implicitly
assume/require the non-failure of BE not included in the sequence before an
included BE. For example, in Figure 3.4 the cut sequence ⟨𝐴,𝐵⟩ assumes that BE
𝐶 does not failed before 𝐴.

Zhang et al. [ZZLL11] offer a more compact way of representing cut sequences, by
adding temporal ordering requirements to cut sets. This allows one representation to
cover multiple cut sequences at once, where some events are ordered independently
of other events. This method would represent the CSS of Figure 3.3 as {{𝑆, 𝑃 , 𝑆 <
𝑃}, {𝑃 ,𝐵}}.

Liu et al. [LXZ+07] provide an alternative method to determine cut sequences
by composition of the cut sequences of the subtrees. This method reduces the

72

T

P

B S

Figure 3.3: Example of a DFT with temporal sequence requirements. The system
fails if both the primary (P) and backup (B) fail, or if the primary fails when the
switch (S) to enable the backup has already failed.

T

A

B C

Figure 3.4: Example of a DFT with implied a non-failed BE in its cut sequences.
The cut sequence ⟨𝐴,𝐵⟩ causes a failure of 𝑇, while the supersequence ⟨𝐶,𝐴,𝐵⟩
does not.

73

amount of repeated work if the same components are present in multiple cut sets.
Additionally, they show [LZX+07] that the cut sequences can be used to perform
quantitative analysis.

A different definition of qualitative analysis for repairable DFTs is provided by
Chaux et al. [CRL+13]. This method computes a language of failure and repair
sequences in which the system is failed after the last element of the sequence.
This language is described by a finite automaton that generates all such sequences
(to keep the language finite, only the sequence up to the first system failure is
considered). The complexity of this method is based on the length of the longest
non-looped sequence of failures and repairs in the system.

Another algebraic method for determining and expressing cut sequences was
developed by Merle et al., by extending the structure function used for static
FTA (described in Section 2.3.1) to first include the Priority-AND gate [MR07] by
allowing a ‘before’ relation as a boolean primitive. This method is subsequently de-
veloped to include the other DFT gates [MRLB10, Mer10, MRL11]. The structure
function can subsequently be used to perform quantitative analysis [Mer10].

Example 18 Considering again Figure 3.3, the FT has the boolean expression:

(𝑃 ∧ 𝐵) ∨ (𝑆 ∧ 𝑃 ∧ (𝑆 < 𝑃))

This expression can be simplified using the law 𝐴 ∧ (𝐴 < 𝐵) = (𝐴 < 𝐵) into

(𝑃 ∧ 𝐵) ∨ (𝑃 ∧ (𝑆 < 𝑃))

This is the minimal disjunctive normal form, showing that 𝑃 ∧𝐵 and 𝑃 ∧(𝑆 < 𝑃)
are the minimal sets of failures and sequence dependencies that yield a top event
failure.

More recently, Rauzy [Rau11] proposed a variant of Minato’s Zero-Suppressed
BDD [iM93] to include ordering information. This variant can be used to find
the minimal cut sequences of DFTs, and the author believes that more efficient
algorithms for other analyses can be based on this representation.

3.3 Quantitative analysis
This section describes analysis techniques for quantitative measures of DFTs. To
recap Sections 2.4 and 2.5, the most important measures computed here are:

Reliability: Probability that no system-level failure occurs within a given time
bound. I.e., if we let the random variable 𝑋𝐹(𝑡) be 0 if the system described
by fault tree 𝐹 is functional at time 𝑡, and 1 if it has failed, the reliability
𝑅𝐹(𝑡) is defined as 𝑅𝐹(𝑡) = ℙ[∀𝑠<𝑡 ∶ 𝑋𝐹(𝑠) = 0]. For non-repairable systems
this is equivalent to 𝑅𝐹(𝑡) = ℙ[𝑋𝐹(𝑡) = 0].

74

Availability: Expected fraction of the time that no system-level failure is occurring.
Using the above definition of 𝑋𝐹(𝑡), the time-bounded availability 𝐴𝐹(𝑡) =
1 − 1

𝑡 ∫
𝑡

0
𝑋𝐹(𝑠)𝑑𝑠. The unbounded availability, mostly useful for repairable

systems, is given by 𝐴𝐹 = lim𝑡→∞ 𝐴𝐹(𝑡).

3.3.1 Algebraic analysis
Merle at al. [MRLB10] show that the cut sequences obtained by qualitative analysis
can be used to obtain an expression for the reliability of the system. This approach
begins by expressing the failure probability of the system in terms of the BEs, and
then substitutes the probability distributions of the failure times of the BEs into
this function.

Example 19 Considering again the DFT in Figure 3.3, we compute that it
has cut sequences {{𝑃 ,𝐵}, {𝑃 , 𝑆 < 𝑃}}. We first apply the inclusion-exclusion
principle to obtain the probability of a top level failure:

ℙ(𝑇) = ℙ(𝑃 ∧ 𝐵) + ℙ(𝑃 ∧ (𝑆 < 𝑃)) − ℙ(𝑃 ∧ 𝐵 ∧ (𝑆 < 𝑃))

Now, expressions for the failure probabilities within a given time can be
substituted. We denote the cumulative failure probability 𝐹𝑒(𝑡) as the probability
of 𝑒 failing before time 𝑡, and the corresponding probability density as 𝑓𝑒(𝑡). Using
the rule for time-dependent failures [MRLB10]:

𝑃([𝐴 ∧ (𝐴 < 𝐵)] < 𝑡) = ∫
𝑡

0
𝑓𝐴(𝑢)𝐹𝐵(𝑢)𝑑𝑢

We obtain the expression:

ℙ(𝑇 ≤ 𝑡) = 𝐹𝑃(𝑡) ⋅ 𝐹𝐵(𝑡) +∫
𝑡

0
𝑓𝑃(𝑢)𝐹𝑆(𝑢)𝑑𝑢 − 𝐹𝐵(𝑡) ⋅ ∫

𝑡

0
𝑓𝑃(𝑢)𝐹𝑆(𝑢)𝑑𝑢

While feasible for simple DFT, larger DFT with nested temporal dependencies
(e.g., (𝐴 < 𝐵) < 𝐶) quickly result in deeply nested integrals making the approach
computationally infeasible.

An alternative method is introduced by Long et al. [LSH00], which can compute
availability at a specific time and the long-term expected number of failures per
unit time. It uses a system of logic called ‘Sequential Failure Logic’ to describe the
temporal restrictions within cut sets. Unfortunately, the equations produced are
difficult to solve due to many multiple integrals, and only a special case where all
failure and repair rates are identical is presented.

75

3.3.2 Analysis by Markov Chains

SF

A

B
𝐸1

𝜆1 = 1
𝐸2

𝜆2 = 2

𝐸3

𝜆3 = 3

𝑆0

𝑆1

𝑓 1

𝑆2

𝑓2

𝑆3

𝑓
3

𝑆1,2𝑓2 𝑆1,2,3
𝑓3

𝑆1,3𝑓3 𝑆1,3,2
𝑓2

𝑆2,1𝑓1 𝑆2,1,3
𝑓3

𝑆2,1𝑓3 𝑆2,1,3
𝑓1

𝑆3,1𝑓1 𝑆3,1,2
𝑓2

𝑆3,2𝑓2 𝑆3,2,1
𝑓1

Figure 3.5: Example conversion of DFT to a Continuous-Time Markov Chain.
States corresponding to system failures (goal states) are indicated by a double
circle. Transition 𝑓𝑖 denotes the failure of BE 𝐸𝑖, and occurs with rate 𝜆𝑖.

The first method proposed to analyze DFTs was by Dugan et al. [DBB90,
DBB92], and computes the unreliability of the system during a time window [0, 𝑡].
This method converts the DFT into a Markov Chain, in which the states represent
the history of the DFT in terms of what components have failed and, where needed,
in what order. Since the number of failed subsets grows exponentially in the number
of BEs, this method is not practical for very complex systems.

Example 20 Figure 3.5 shows a simple DFT converted into a Markov Chain.
From the starting state 𝑆0, in which all components are operational, three
transitions are possible representing the failures of the three BEs. After the failure
of the first BE, two more BEs can fail, and finally the last BE fails. If all three
BEs have failed, and 𝐸2 failed before 𝐸3, system failure occurs, which corresponds
to the circled (goal) states in the MC. In the other states the system is still
operational. Existing tools such as PRISM [KNP11] and STORM [DJKV17] can
be used to compute the probability of reaching a goal state within a certain time,
corresponding to system unreliability.

The MC in Figure 3.5 could be reduced without affecting the computed
probabilities. For example, from 𝑆3 no goal state can ever be reached. It is
therefore acceptable to replace 𝑆3 by an absorbing state to reduce the complexity
of further analysis. A full discussion of minimization techniques is beyond the
scope of this thesis, but several are listed in [BK08].

Codetta-Raiteri [CR05a] presents a transformation of DFTs to Stochastic Petri

76

Nets [CDFH93], which are in turn analyzed by conversion to Markov Chains.
Although this method still suffers from a combinatorial explosion when constucting
the Markov Chain, the Petri Nets are much smaller and easier to understand and
extend.

Dehnert et al. [DJKV17] continue the direct translation of DFTs to Markov
chains, but with more reduction techniques to reduce the state-space and analysis
time of the chains.

Compositional analysis of DFTs

Boudali et al. [BCS07a, BCS07c] use a different method to calculate the reliability
of a DFT, which reduces the combinatorial explosion in many common cases. They
provide a compositional semantics for DFTs, i.e., each DFT element is interpreted
as an Interactive Markov Chain [Her02] and the semantics of the DFT is the parallel
composition of the elements. The papers provide several reduction techniques to
minimize the resulting Markov Chain. In addition, it allows DFTs to be extended
with repairable components and mutually exclusive events.

The analysis is performed by converting a DFT into an Input/Output Interactive
Markov Chain for analysis. This model is constructed by computing the parallel
composition of the I/O IMCs for parts of the tree, down to individual gates and
events. Since intermediate models can be analyzed to remove unnecessary states,
the total I/O IMC can be much smaller than the Markov Chain produced by earlier
methods, and the combinatorial explosion is reduced. This overall process is shown
in Figure 3.7.

The program DFTCalc was developed by Arnold et al. [ABvdB+13] to analyze
reliability and availability of DFTs using the I/O IMC methodology.

Example 21 Figure 3.6 shows the I/O IMC equivalents of the basic event 𝐸1
and the gate 𝐴 of the DFT in Figure 3.5. Below that, the parallel composition
of the two elements are shown. This composition behaves as if the two separate
elements are ran in parallel, with the output signal of the BE (𝑓𝐸1

!) permitting
the transition with input signal 𝑓𝐸1

? in the gate’s IMC.
Observe that input signal 𝑓𝐵? is still present in the composition, allowing this

IMC to be composed with gate 𝐵 later. Similarly, output action 𝐹𝐸1
! allows the

later composition with other gates in which 𝐸1 is an input. If no such gates exist,
the IMC can be minimized by removing these output transitions.

Unlike traditional Markov Chains, I/O IMC are capable of modeling nonde-
terminism between actions. Guck et al. [GTH+14] use this approach to model
maintenance strategies where it is not specified which of multiple failed components
to repair first.

More recently, Volk et al. [VJK18] have demonstrated a new state-space gen-
eration approach exploiting the structure of the DFT to apply various reduction

77

𝜆 = 2 𝑓𝐸2
!

𝑀𝐸2
=

𝑓𝐸2
?

𝑓𝐸3
?

𝑓𝐸3
? 𝑓𝐵!

𝑀𝐵 =

𝑀𝐸2
||𝑀𝐵 =

𝜆 = 2

𝑓𝐸
3 ?

𝑓𝐸2
!

𝑓𝐸
3 ?

𝑓𝐸3
?

𝜆 = 2 𝑓𝐸2
!

𝑓𝐵!

𝑓𝐸
2 !

Figure 3.6: Example conversion of part elements 𝐸1 and 𝐴 of the DFT in
Figure 3.5 to an I/O Interactive Markov Chain. Input signals are denoted by a
question mark, output signals by an exclamation mark.

techniques. This approach is shown to be considerably faster than the compositional
method, and can be combined with other reduction techniques [KS17].

Pullum and Dugan [PD96] developed a program to divide a DFT into indepen-
dent submodules for computing reliability. Submodules containing only static gates
can then be solved using a traditional BDD method, while submodules containing
dynamic gates can be solved using Markov Chain analysis.

Example 22 Suppose we are computing the availability at time 𝑡 of the DFT
in Figure 3.5. We can convert the entire DFT into a Markov Chain such as
the figure shows, but only the subtree rooted at 𝐵 is dynamic. We can therefore
replace this subtree by a fictional node 𝐵∗ and use a BDD to determine the
minimal cut sets of the tree, which is only {𝐸1, 𝐵∗}. Following Section 2.5.3,
the availability of the tree is given by 𝐴SF (𝑡) = 𝐴𝐸1

(𝑡) ⋅ 𝐴𝐵∗(𝑡). Markov chain

(a) DFT (b) Transformation (c) Composition (d) Minimisation (e) IMC

Figure 3.7: Compositional aggregation with intermediate minimization.

78

analysis can now be used to compute the value 𝐴𝐵∗(𝑡), and 𝐴𝐸1
(𝑡) is the same as

for a static fault tree.

Han et al. [HGH11] also modularize a DFT and use BDD for the static sub-
modules, but use the approximation by Amari et al [AGE03] to solve the dynamic
submodules. This avoids the state-space explosion problem of analysis by conversion
to Markov Chain, while retaining a reasonable degree of accuracy.

Later, Liu et al. [LXL+10] proposed a method to modularize DFTs further, by
also collapsing static subtrees of a dynamic gate, but keeping additional information
about the probability distribution of these subtrees.

Yevkin [Yev11] provides additional modularization techniques, which can convert
static subtrees and some dynamic subtrees into equivalent BEs, reducing the
complexity of further analysis.

3.3.3 Analysis using Dynamic Bayesian Networks
The method by Bobbio et al. [BPMC01] of converting an SFT into a Bayesian
Network (described in Section 2.4.2) was later improved by Montani et al. [MPB05a]
by using a Dynamic Bayesian Network (DBN) to analyze DFTs. A DBN extends
classic Bayesian Networks by introducing a notion of time, and allowing the
conditional probabilities at the current time to depend on the values of the random
variables at earlier times (in addition to their current value).

In this approach, the DBN is evaluated at many points in time, with the
state probability distributions carried over from each timestep to the next. By
also allowing nodes to have probabilities conditional on their own state in the
previous timestep, dynamic behaviour can be included in the analysis. Due to
the discretization, results from this method are not exact. Results can be made
arbitrarily accurate by shrinking the discrete timesteps, though the computation
time increases linearly in the number of timesteps. Only non-repairable FTs are
analyzed by this method, however Portinale et al. [PCRM10] propose a similar
method for repairable FTs. Other extensions from the earlier BN work such as
noisy gates remain applicable.

The Bayesian Network method has been extended by Boudali and Dugan [BD05]
to model DFT gates. This method can produce results equivalent to solving a
discretized version of the Markov Chain corresponding to the DFT, but can also
be extended with dependent component failures and multi-state components by
changing the produced DBN. No comparison between this method and the method
by Montani et al. [MPB05a] is presently available.

Example 23 Figure 3.8 shows the dynamic Bayesian network of the DFT in
Figure 3.5. Gates {𝐴,𝐵} and basic events {𝐸1, 𝐸2, 𝐸3} form the nodes of the
network, while input relations in the DFT form one-way conditional probabilities.
Basic events are not repairable, and thus remain failed if they were failed in

79

𝐸1[𝑘]

𝐸2[k]

𝐸3[𝑘]

𝐴[𝑘]

𝐵[𝑘]

𝐸1[𝑘 − 1]

𝐸2[𝑘 − 1]

𝐸3[𝑘 − 1] 𝐵[𝑘 − 1]

ℙ[𝐸𝑖[𝑘] = 1|𝐸𝑖[𝑘 − 1] = 1] = 1
ℙ[𝐸𝑖[𝑘] = 1|𝐸𝑖[𝑘 − 1] = 0] = 𝛿𝜆𝑖
ℙ[𝐵[𝑘] = 1|𝐵[𝑘 − 1] = 1] = 1

ℙ[𝐵[𝑘] = 1|𝐸2[𝑘] = 𝐸3[𝑘] = 1
∧𝐸3[𝑘 − 1] = 0] = 1

ℙ[𝐴[𝑘] = 1|𝐸1[𝑘] = 1 ∧ 𝐵[𝑘] = 1] = 1

Figure 3.8: Dynamic Bayesian Network corresponding to the DFT in Figure 3.5
with timestep 𝛿. Default rules with probability 0 have been omitted.

the previous timestep. Otherwise, the probability of their failure in the current
timestep depends on their failure rate. This explains the first two conditional
probability rules.

The next two rules give the behaviour of the PAND gate 𝐵. If it was failed
in the previous timestep (i.e., 𝐵[𝑘 − 1] = 1, it remains failed (i.e., 𝐵[𝑘] = 1).
Otherwise, it fails if both inputs are failed, and 𝐸3 has not failed earlier. Note
that behaviour on simultaneous failure is deterministic in this model (namely the
PAND gate fails on simultaneous failure of its inputs).

Finally, the state of AND gate 𝐴 is determined purely by its inputs.

As for other analysis methods, computational requirements can be reduced by
modularizing the FT and using more efficient methods for the static subtrees. Such
an approach combining BDD and DBN was proposed by Rongxing et al. [RGD10].

Since a BN allows arbitrary conditional probabilities to be specified, it is
possible to include failure rates of gates in addition to that implied by the tree
structure. This improves accuracy and reduces the effect of modeling errors. Such
an approach was described by Graves et al. [GHK+07]. This is useful, since many
real-life systems record component failures at an intermediate level, rather than
diagnosing every fault to the level of the BE.

80

3.3.4 Other approaches
Mo [Mo14] described a method for converting a DFT into a multiple-valued
decision diagram (MDD) to compute the reliability of non-repairable systems. In
this approach, subtrees containing only static gates are directly converted into
MDDs, while subtrees with dynamic gates are solved by conversion into a CTMC
before the results are included in the MDD. This approach reduces the state-space
explosion problem in many common cases, but in the worst case of a dynamic gate
as the TE a full CTMC still needs to be solved.

A purely algebraic approach is suggested by Amari et al. [AGE03], which
calculates the probability distribution at every gate by appropriately combining the
distributions of the inputs. While this approach gives exact results and does not
suffer from the state-space explosion effect common when using Markov Chains,
only a subset of trees satisfying particular rules can be analyzed this way.

Ni et al. [NTX13] propose a different algebraic method for describing the DFT
structure, which produces a boolean-like expression of the DFT. This method
allows minimal cut sequence determination as well as quantitative analysis.

3.3.5 Simulation
Quantitative analysis can be performed by Monte Carlo simulation. Failures and/or
failure times are sampled from their respective distributions, and the effect these
failures have on the system are calculated.

Quantitative Monte Carlo analysis can be performed using the method by
Durga Rao et al. [DRGSR+09], which can also be applied if the components are
individually independently repairable.

Boudali et al. [BNS09] developed a program to analyze DFTs using Monte
Carlo simulation. It allows BE failure distributions to change over time, and even
based on different clocks for different BE, resulting in non-Markovian models. This
is useful when, for example, a system takes time to warm up and this affects the
failure rates.

If the minimal cut sets have already been determined, Liang et al. [LYZL09]
propose a Monte Carlo method for computing the unreliability of an RFT. This
approach allows the failure and repair rates to follow arbitrary distributions, but
still does not allow repair policies other than independent component repair.

Zhang et al. [ZMFW09] showed that it is possible to convert a DFT to a Petri
Net, on which quantitative analysis can be performed by simulation. Exact analysis
on Petri Nets is normally done by conversion into Markov Chains, still resulting
in a state-space explosion. Simulation, however, can be performed directly on the
Petri Net, although the benefits compared to simulation of the untransformed DFT
are not stated.

If very high performance is required, it is possible to construct a hardware

81

circuit to perform Monte Carlo Simulations much faster than normal computer
simulation. Such an approach is described by Aliee and Zarandi [AZ11].

Fault trees with very low failure probabilities are generally difficult to analyze
through simulation, as very many random samples are required to obtain a suffi-
ciently large number of top level events to achieve tight confidence intervals. In
work by Ruijters et al. [RRdBS17] (described in Chapter 6), a technique called
importance sampling is used to reduce the number of simulations required to
compute confidence intervals for repairable DFTs.

Rajabzadeh and Jahangiry [RJ10] propose a conversion of a DFT into an
analogue electronic circuit, which outputs a voltage corresponding to the system
failure probability. This approach does require an approximation for some of the
gates, and the accuracy on larger models is not demonstrated.

A method for the analysis of the sensitivity of various model parameters is
provided by Ou and Dugan [OD00].

3.4 Conclusions
This chapter has explained how the formalism of dynamic fault trees expands on
static fault trees by introducing additional gates modelling common dependability
patterns, notably those of order-dependent failures, warm and cold spare compo-
nents, and functional dependencies. We have also provided an overview of the
various qualitative and quantitative methods to analyze such dynamic fault trees.

Qualitatively, the cuts sets used in SFTs have been expanded to cut sequences
to incorporate information about the order in which components fail, and various
techniques have been proposed to find such cut sequences.

Quantitatively, the main methods involve translating a DFT to a Markov chain
or dynamic Bayesian network, or simulation. Various other methods exist but are
currently less developed.

82

Chapter 4

Fault tree extensions

While dynamic fault trees are the most popular extension to static fault trees,
several other ways of extending FTs have been proposed. The extensions can be
approximately divided into several categories.

1. Fault trees using fuzzy numbers can be used in cases where failure probabilities
or behaviour are not known exactly.

2. Several extensions allow fault trees to model systems where basic events are
stochastically dependent, such as when a failure of one component increases
the failure rate of another component.

3. Repairable Fault Trees can represent more complex repairable systems than
the simple repair rates in classic FT.

4. The temporal relations between events are important. Dynamic fault trees in-
clude certain temporal dependencies, but other extensions have been proposed
as well.

5. State/Event Fault Trees were introduced to model systems and components
with a state that varies over time, and where this state affects the consequences
of component failures or the failure rates.

6. Miscellaneous extensions, e.g., integrating Attack Trees with FTs.

As for standard FTs, the extensions can be analysis qualitatively to obtain
(some variation of) cut sequences, or quantitatively to obtain numerical measures
such as reliability (probability of of failure before a given time bound) or availability
(expected time that the system is not failed, mostly useful for repairable systems).

These extensions are discussed in sections 4.1 through 4.6, respectively. An
overview of the relevant measures for each extension can be found in Table 4.1
(page 84), a summary of the extensions is provided in Table 4.2 (page 98).

Origin of this chapter This chapter is expanded from Chapter 4 of:

• Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. Computer Science Review,
15–16:29–62, 2015. doi: 10.1016/j.cosrev.2015.03.001, issn: 1574-0137.

83

https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001

Measures

C
ut

sets

R
eliability

A
vailability

O
ther Methods

DFT with repair boxes [BCR04] + + + [BCR04]
Repairable FT [CRFIV04] + + + [CRFIV04]

Combined FT [CR05b, CR11] + + + [CR11]
Nondeterministic RFT

[BCRFH08, BFCRH09, BFCRH14] + + + [BFCRH09, BFCRH14]
FT with Attack Tree [FMC09] + + ? [FMC09]

Fuzzy FT [TFLT83] = + [TFLT83, WX12, GeE99]
Fuzzy FT [Sin90] = + [Sin90]
Fuzzy FT [LW97] = ? + [LW97]

Fuzzy FT [KJG96] = + [KJG96]
Fuzzy FT [SCC06, Li08] = + [SCC06, Li08]

Fuzzy FT [RK11] ? + [RK11]
Fuzzy FT [EIO98] ? ? + [EIO98]
Fuzzy FT [HTZ04] = + [HTZ04]
Fuzzy FT [PP94] = + [PP94]

Extended FT [Buc99, Buc00b] ? + + + [Buc00b]
Multistate FT [ZWST03] + + [ZWST03]

FT with mutual exclusion [TRSS00] + + [TRSS00]
FT with dependent events [Vau02] = ? + [Vau02]

BDMP [Bou02, Bou07, Bou08] ? + + + [Bou08, Bou07]
FT with AND-THEN [WM00] + ? [WM00]

DFT with simultaneity [WBP07, WP09] + ? [WBP07]
Formal FT Semantics [STR02] + ? [STR02]

FT with Duration Calculus [Glu07] + [Glu07]
Temporal FT [Pal02] + ? [Pal02]
Combined FT [CR11] ? + + [CR11]

State-Event FT [KG04, Kai05] ? + + [XHH+13, KG04]

Table 4.1: Analysis and tool support for fault tree extensions. Measures
for which analysis techniques are described are marked with ‘+’, measures for which
existing analysis techniques apply unchanged are marked with ‘=’, and measures
for which analysis techniques have not yet been developed are marked with ‘?’.
Blank spaces indicate the measure is not applicable to that extension.

84

4.1 FTA with fuzzy numbers
Fault trees using fuzzy numbers were introduced by Tanaka et al. [TFLT83] as a
way to reduce the problem that failure probabilities of components are often not
exactly known. Fuzzy numbers represent uncertainty by not specifying an exact
number, but rather a range which contains the true value. Alternatively, they
can be used as input to the FT, in which case they specify categories to which a
probability belongs, to a greater or lesser degree.

Example 24 Suppose we would like experts to specify a failure probability using
the categories ‘high’, ‘medium’, and ‘low’. It is possible to set exact endpoints
and ask the experts to rate any value between 0 and 0.2 as low, this has two
disadvantages: First, linguistic descriptions are commonly used so that the expert
does not need to estimate an exact probability, and giving endpoints reintroduces
that requirement. Second, if the expert estimates a probability to be approximately
0.2, the expert must decide whether this is low or medium, and the model does
not capture the uncertainty that the expert may have.

Alternatively, we can describe the categories as fuzzy subsets of the interval
[0, 1]. Figure 4.1 shows possible membership functions for the categories. Here,
for example, the value 0.1 is said to be fully a member of ‘low’ and no member
of either other category. Thus experts are assumed to always classify 0.1 as low.
The value 0.3 is partly a member of ‘low’ with membership 0.5, signifying that
half of the experts would classify 0.3 as low.

Mahmood et al. [MAV+13] have conducted a literature review exploring dif-
ferent variations of Fuzzy Fault Trees, and various methods for their analysis. A
brief overview is provided below.

FTs are often specified using fuzzy numbers for the probabilities or possibilities
of basic events. A common method is to use fuzzy set theory: A fuzzy set has
a membership function which gives, for any argument, the degree to which that

10.40.20,0

1
low medium

0.80.6

high

Figure 4.1: Example of fuzzy membership functions of the sets ‘low’, ‘medium’,
and ‘high’

85

argument is a member of the given fuzzy set. In this context, BE probabilities are
given as a fuzzy subset of the interval [0, 1].

The membership function of a fuzzy subset of the real numbers is similar to
the probability density function of a probability distribution. The difference is
that where a PDF gives the probability of a variable having a value given the
distribution this variable belongs to, the membership function gives the degree to
which a value belongs to a fuzzy set, without making a claim regarding the likely
values of variables given the fuzzy set.

If a fuzzy number contains only one possible value, it is the same as a conven-
tional or crisp number.

Singer [Sin90] provides a method for computing the TE fuzzy probability if the
membership function can be specified in a special form called an L-R type. This is
a function that is symmetric about some point on the probability axis except for a
scaling factor, and can be represented by a function of the form

𝑚(𝑝) = {𝐿(𝑝) = 𝑓 (𝑐−𝑝
𝑙) if 𝑝 < 𝑐

𝑅(𝑝) = 𝑓 (𝑝−𝑐
𝑟) if 𝑝 >= 𝑐

Where 𝑓 ∶ ℝ ↦ ℝ is some function, 𝑐 is the point of symmetry, and 𝑙 and 𝑟 are
scaling factors.

This method is frequently applicable since many common probability distribu-
tions (including the normal, uniform, and triangular distributions) can be described
in this form.

An alternative method is described by Lin et al. [LW97], in which some of the
BEs are described by multiple fuzzy numbers obtained from different experts. These
fuzzy numbers could, for example, be derived from natural language expressions
describing the events from ‘very probable’ to ‘very improbable’. This method
combines these multiple fuzzy probabilities into one crisp probability for the BE,
and then analyses the FT as normal.

When multiple probability estimates are available, Kim et al. [KJG96] offer a
method to use these to calculate ‘optimistic’ and ‘pessimistic’ fuzzy probabilities
for the TE. This approach may be useful when each expert gives only small
uncertainties due to natural variation in components, but different experts give
these uncertainties over different ranges, for example due to different opinions of
the likelihood of human error.

If the membership functions for the BE probabilities are themselves uncertain,
this may be included in the model using ‘intuitionistic fuzzy set theory’, as described
by Shu et al. [SCC06, Li08]. In this model, two membership functions describe an
upper and lower bound on the membership. This can be used if, for example, a
probability is believed to lie between 0.4 and 0.6, but it is not known what value
in this range is the most likely.

Ren and Kong [RK11] provide a means for analyzing an FT when not only the

86

BE probabilities are uncertain, but also the effects of component failure on the rest
of the system. In this framework, components can have multiple states rather than
only operational and failed. Each gate can also have multiple states, and these
states can be triggered by various combinations of input states. This can model a
system which can continue operating after certain component failures, but only in
a degraded way. Such a degradation can have other effects on the gates above it.

An alternative approach to uncertain network structure is the introduction
of noisy gates [BPMC01]. These gates have some probability of failing when the
standard gate would not, or vice versa. For example, a computer with redundant
hard drives may fail to detect and correct certain errors, leading to a system failure
even though the backup drive is perfectly functional.

In repairable FTs, uncertainty can exist not only in the BE failure rate but also
in the repair rate. A system for accounting for this uncertainty in calculating the
overall system availability is given by El-Iraki and Odoom [EIO98].

If the failure probabilities are very uncertain, Huang et al. [HTZ04] offer a
method based on possibility measures that may offer better results than probability-
based fuzzy number approaches. In this method, basic events are specified with
possibilities representing estimated lower bounds on the failure probabilities. In
this context, the possibility of the TE can be calculated quite efficiently.

It is also possible to model the probabilities as themselves being random
variables with a normal distribution. As Page and Perry [PP94] showed, this allows
a better quantification of the uncertainty in the result, although it may require
more assumptions on the part of the FT designer.

More generally, Forster and Trapp [FT09] suggest that BE probabilities can be
specified as intervals, within which the actual probabilities are sure to lie. Their
method uses Monte Carlo simulation treating these intervals as bounds on a uniform
distribution (although they mention that arbitrary distributions may be used) to
compute the second-order probability mass function for the TE probability.

4.1.1 Importance measures for fault trees with fuzzy num-
bers

Aside from the TE probability, it can also be useful to determine which components
have the greatest effect on this probability. Several methods for determining this
have been developed.

Furuta et al. [FS84] suggested to extend the structural importance to be
calculated using fuzzy probabilities, and named the resulting value the fuzzy
importance.

Alternative measures were suggested by Suresh et al. [SBR96], which also
include the amount of uncertainty contributed by each component. The Fuzzy
Importance Measure of a component 𝑖 is defined as FIM (𝑖) = ED [𝑄𝑞𝑖=1, 𝑄𝑞𝑖=0],
where 𝐸𝐷 denotes the Euclidean distance between two fuzzy numbers, 𝑄𝑞𝑖=1 is

87

the TE probability if event 𝑖 has an occurrence probability of 1, and 𝑄𝑞𝑖=0 is the
TE probability if event 𝑖 has a probability of 0.

Similarly, the Fuzzy Uncertainty Importance Measure is defined as FUIM (𝑖) =
ED [𝑄,𝑄𝑞𝑖=0], where 𝑄 is the TE probability. This measure ranks a component
as more important if its probability is less certain.

Finally, if the distributions of the BE probabilities can be bounded with certainty,
for example based on manufacturer specifications, it is possible to use Interval
Arithmetic to obtain exact bounds on the distribution of the TE probability, as
shown by Carreras and Walker [CW01].

4.1.2 Analysis methods measures for fault trees with fuzzy
numbers

Since the structure of most fuzzy FT is the same as that of classic FT, qualitative
analysis can be performed without change. Some extensions, such as the multistate
FT by Ren and Kong [RK11], require different methods.

One of the first methods proposed to analyze a Fuzzy Fault Tree is to determine
the minimal cut sets, and perform a standard quantitative analysis using the
Extension Principle developed by Zadeh [Zad75] to perform arithmetic on fuzzy
numbers.

The use of the Extension Principle is computationally intensive for larger trees,
and cannot be applied if repeated events are allowed in the tree. Soman and
Misra [SM93] offer an alternative method to calculate the top event probability,
called a ‘resolution identity’ using the ‘𝛼-cut’ method, which does allow repeated
events and has lower computational requirements. This method was extended to
allow multi-state elements in [MS95].

Guimarẽes and Ebecken [GeE99] present a computer program named FuzzyFTA
that can calculate the FIM and FUIM of any gate using either the fuzzy logic
approach using 𝛼-cut or a Monte Carlo Simulation. The results of these methods
are in agreement, although the fuzzy approach provides more information and is
quicker.

Another approach described by Wang et al. [WXNM11, WX12] is the conversion
of the FT into a Bayesian Network and performing analysis using fuzzy numbers
on the resulting BN. It is shown that this approach can give the same results as
traditional FT analysis, but it also has the additional flexibility provided by BN.

4.2 Fault Trees with dependent events
Classic FT assume that the BE are all statistically independent. This is often not
true in practice, as events can have common causes, or the failure of one component
can accelerate the failure of another.

88

Coolant Failure

P1

st
op

pe
d

P2

st
op

pe
d

P1

slo
w

P2

slo
w

DEFINE FAILDEP pump1:
CAUSE = P1.slow;
EFFECT = RATECHANGES P2:*2;

END
DEFINE FAILDEP pump2:

CAUSE = P2.slow;
EFFECT = RATECHANGES P1:*2;

END

Figure 4.2: Example of an extended FT. Pumps P1 and P2 have failure modes
‘stopped’ and ‘slow’. Either pump stopping or both pumps slowing leads to failure.
Either pump slowing accelerates failure of the remaining pump.

Dynamic gates in DFTs can model some dependencies, as was explained in
Chapter 3.

Buchacker [Buc99, Buc00b, Buc00a] suggests to modify Fault Trees into ‘ex-
tended Fault Trees’ that allow components to have states other than fully oper-
ational and fully failed. This allows the modeling of gradual degradation of a
component over time, as well as components that can fail in multiple ways that have
different interactions with other failures. In addition, this model adds dependencies
between components affecting failure and repair rates. Figure 4.2 shows an example
of an extended FT with multi-state components and dependent failure rates.

Another approach for systems with multistate components is provided by Zang
et al. [ZWST03]. This approach represents the overall system by multiple fault
trees, each of which is a fault tree for a particular failure state of the overall
system. These trees are then combined into a single multistate decision diagram
with dependent nodes, and analyzed to determine the overall probability of the
system reaching each failure state.

Twigg et al. [TRSS00] suggest a method to specify mutually exclusive events.
An example of a model where this is useful, is a valve that can fail open or closed.
Since these failure modes cannot occur at the same time, a traditional FT cannot
correctly model this component.

Yet another design is provided by Vaurio [Vau02], in which mutually dependent
events are replaced by groups of independent events, such that a traditional analysis
of the FT gives the correct results. A drawback of this approach is that each group
of 𝑛 dependent events is replaced by 2𝑛 − 1 independent events, which results in a
combinatorial explosion if many events depend on each other.

For models with particularly complex interdependencies, Bouissou [Bou02,

89

Bou08] offers a formalism called Boolean logic Driven Markov Processes (BDMP)
as an extension to fault trees. In this formalism, events are described by Markov
Processes with designated failure states. Then, events in the FT can cause these
events to switch to different processes, for example to increase the failure rate if
another component fails.

In addition to analyzing the resulting Markov Chains to obtain reliability
and availability, it is possible to extract cut sequences from a BDMP [CRL+12],
and to construct a Finite State Automaton with equivalent behaviour to the
BDMP [CRL+11].

Besides Markov Processes, Bouissou [Bou07] also describes the option to replace
BEs with Petri Nets, although no method is described for switching these due to
external events. This method can improve the modeling of DFT spare gates with
shared spare components.

4.3 Repairable Fault Trees
To analyze the reliability of a system over a long period of time, it is often useful
to include the possibility of repairing or replacing failed components during this
time. These repairs may extend the time before a system failure occurs, such as
when a failed redundant part is replaced, or they may return a failed system to
normal operation.

Sometimes the simple repair rate model presented in Section 2.5 is not sufficient.
Bobbio et al. [BCR04] introduced Repair Boxes which can be connected to a gate,
and begins repairs on the BEs of the subtree of that gate only when the gate
fails. Raiteri et al. [CRFIV04] extended these repair boxes to allow different repair
policies to be used in the model. The resulting tree is called a Repairable Fault
Tree (RFT). Figure 4.3 shows an example of an RFT.

In this formalism, each BE 𝑒 has a failure rate 𝐹𝑅(𝑒), which is the parameter
of an exponential distribution that determines the time until the component fails.

Each RB is connected to one or more BE to repair, and one incoming BE or gate.
When the incoming event occurs, the repair box is activated and begins repairs on
the outgoing components according to the repair policy. Every component also has
a repair rate that is the parameter of another exponential distribution modelling
the time to repair the component.

Repair policies can be very simple, even equivalent to the simple repair rates
model, or more complex, for example restricting the number of components that
can be repaired simultaneously.

The major advantage of this approach is that it allows modelling of more
realistic systems, and analysis of what repair strategies are best. A disadvantage is
these trees cannot be quantitatively analyzed using combinatorial methods.

Flammini et al. [FMIM05] added the possibility of giving priority to the repair

90

System Failure

G1G1 In Use (U)

G2

G3 B

G4 G5

C1 PS G6 C2PS

M1 M2 M3

2/3

ℛ

ℛ ℛ

Figure 4.3: Example of an RFT, repairs on the shared components are only
initiated when the entire system fails. CPUs 1 and 2 are repaired when their
respective compute node fails.

91

of certain components, based on the repair rate, failure rate, or level of redundancy
of the components. Other priority schemes can also be implemented within this
system.

A different extension is provided by Beccuti et al. [BCRFH08, BFCRH14], which
adds nondeterminism to the repair policies. This models cases where, for example,
a mechanic individually decides which component to repair first. Conversion to
Markov Decision Process allows optimal policies to be automatically derived from
the FT when costs of unavailability, failures, and repairs are provided. A parametric
version [BFCRH09] of the formalism allows for more efficient modeling and analysis
if the FT contains subtrees that differ only in the parameters of the BEs.

Leaving repair policies nondeterministic also allows the computation of an
optimal repair policy, by associating costs with unavailability, failures and repairs.
Becutti et al. [BFCRH14] show that such an optimal policy can be computed by
converting the FT into a Markov Decision Process.

4.3.1 Analysis
RFTs can be analyzed to obtain the same measures that apply to classic FTs with
repair rates.

Traditional qualitative analysis of an RFT can be applied identifying cut sets
etc. by ignoring the repair aspects. The purposes of such analysis are the same as
for non-repairable FTs, such as identifying single points of failure or since such an
analysis would ignore the repairability aspect.

Quantitative analysis is more useful, but also more difficult: Combinatorial
methods are no longer sufficient, as the evolution of the system over time has to
be considered.

For systems where each component can be individually and simultaneously
repaired at a constant rate, Balakrishnan and Trivedi [BT95] proposed to convert
the model into a Markov Chain, although this method uses an approximation to
reduce computational requirements.

Another approximation is provided by Dutuit and Rauzy [DR05], although this
approximation can also only be used in models with a constant repair rate. The
approximation is shown to give results close to the exact solution and several other
approximations.

The more general analysis method proposed by Raiteri et al. [CRFIV04] is
to convert the RFT into a Generalized Stochastic Petri Net, and then translate
this into a Markov Model. Existing analysis tools for Markov Models can then be
applied. Flammini et al. [FMI+14] show that this method can be used on parts of
a system while the non-repairable parts can be analyzed using traditional methods.

If the FT contains subtrees that can be effectively parameterized, the method
by Bobbio et al. [BCR04] of converting the FT into a Stochastic Well-Formed
Net (a coloured version of a Generalized Stochastic Petri Net) and then into a

92

Markov Chain may be more efficient, although this formalism only allows relatively
simple repair boxes. A later extension by Codetta-Raiteri [CR05b, CR11] combines
Parametric, Dynamic, and Repairable FTs, allowing complex repair policies, and
also performs quantitative analysis by conversion to a Stochastic Well-Formed Net.

A later alternative is offered by Portinale et al. [PCRM10], which translates an
RFT into a Dynamic Bayesian Net for analysis. This method also allows complex
repair policies, as well as components with several different failure modes and
statistically dependent failure probabilities.

For performing very fast Monte Carlo simulations, Kara-Zaitri and Ever [KZE09]
developed a method for generating a hardware model of the system in a Field
Programmable Gate Array, which can perform each Monte Carlo run many times
faster than a conventional computer simulation.

4.4 Fault trees with temporal requirements
As discussed in Chapter 3, dynamic fault trees allow for the inclusion of certain
types of temporal information. For some systems, more complex temporal dynamics
are required for an accurate model. Several methods have been proposed to offer
more flexibility.

One way that has been proposed by Wijayarathna et al. [WM00] is to add
an AND-THEN gate. This gate’s output event occurs if the second input occurs
immediately after the first. For example, a fire safety system might have backup
systems that take time to deploy, so a primary system fault before a fire is not
a failure, nor is a fault after a fire has already been extinguished. Only a fault
immediately after a fire starts (perhaps caused by the fire) causes a system failure.

Walker and Papadopoulos [WBP07, WP09] have suggested extending static
FTs with Priority-AND, Priority-OR, and Simultaneous-AND gates. These allow
the same temporal relations to be enforced as a dynamic fault tree, but also allow
a requirement for simultaneous faults. Such a simultaneous fault is most likely
caused by a shared dependency. This method can model any system that can be
modeled using the AND-THEN gate. A reduction procedure also described by
Walker and Papadopoulos [WP10] can be used to simplify the analysis.

An advantage of this system is that it can still be qualitatively analyzed using
algebraic methods, rather than needing to be converted into a Markov Model or
other state-space system.

Another construction is described by Schellhorn et al. [STR02], which extends
classic FTs with cause-consequence OR- and Inhibit-gates, and synchronous and
asynchronous cause-consequence AND-gates. In this model, the classic (called
decomposition gates or D-gates) are true if their condition is true at all times. The
cause-consequence gates (or C-gates) are true for some indeterminate period after
their condition is met.

93

This construction cannot be used for quantitative analysis, as the C-gates do
not have well-defined times at which they are true. Qualitative analysis is possible,
as it is proven that the prevention of at least one event from every cut set prevents
the TE in this model, just like in a static FT.

If timing information is needed beyond the sequence of events, several other
extensions can be used. Gluchowski [Glu07] adds Duration Calculus [CHR91] to
FT. This formalism allows reasoning about situations where delays are important.
Unfortunately, it has not yet been proven that the gate formulas are decidable, and
automated analysis tools cannot currently analyze the dynamic portion of these
trees.

Another formalism is the Temporal Fault Tree (TFT) by Palshikar [Pal02].
This formalism adds several gates corresponding to operators in Propositional
Linear Temporal Logic (PLTLP), such as PREV 𝑛, which is true if the input event
has been true for the last 𝑛 amount of time, and the SOMETIME-PAST, which is
true if its input has ever been true.

TFT can impose many types of requirements on the event sequence, but have
the disadvantage of requiring the user to understand the formalism of temporal
logic.

Qualitative analysis of TFTs is performed by converting them into regular FTs
with additional events for the PLTLP gates, and post-processing the resulting cut
sets to recover the temporal requirements.

4.5 State-Event Fault Trees
Kaiser and Gramlich [KG04, KGF07] have proposed to extend Fault Trees by
combining them with Finite State Machines. Such a State-Event Fault Tree
(SEFT) allows for greater modularity, and keeps the diagram more readable than
a traditional FT of a complex system. In addition, it can model systems and
components that have different states with different failure modes. Computer
programs are good examples of such systems.

SEFT have states and events. States describe conditions that last for some
time, while events occur instantaneously. The two can be linked, as events can
cause transitions between states, and a transition between states is an event. Like
in an FT, gates can be used to require conditions before an event occurs. An SEFT
distinguishes between a History-AND gate and a Sequential-AND or Priority-AND
gate, in that the latter requires the input events to occur in a given order.

A later paper by Kaiser [Kai05] adds delay gates, to model events and state
transitions that occur some time after an initiating event, conditional probability
gates, that cause the output event to occur with some probability every time
the input event occurs, and a set of adapter gates that allow certain translations
between states and events.

94

System Failure

U D

𝜆 = 10

U D

𝜆 = 10

W
𝛿 = 1

P1 P2

W

Figure 4.4: State-event fault tree example of two computer processes P1 and P2,
which fail approximately once every 10 hours. The watchdog process W restarts
any failed process once per hour. System failure occurs when both P1 and P2 are
down.

95

Analysis of SEFT can be performed by translating them into Deterministic and
Stochastic Petri Nets, and using existing tools to analyze the resulting DSPN.

Förster and Kaiser [FK06] provide a more efficient way of performing this
analysis, by dividing the SEFT into modules, and converting any static modules
found into Component Fault Trees (CFT). A hybrid analysis can then be performed
combining BDD for the CFT and DSPN for the dynamic submodules, which is
more efficient than using a DSPN for the entire tree.

Xu et al. [XHH+13] introduce formal semantics for SEFT, and provide a
method based on these semantics to determine MCS. This method extends Interface
Automata [dAH01] to Guarded Interface Automata, and translates an SEFT into a
GIA Network. From this network the cut sequences can be determined and reduced
into a minimal cut sequence set.

Another method for qualitative analysis is provided by Roth et al. [RL13],
which converts the SEFT into an extended Deterministic and Stochastic Petri-Net
(eDSPN), on which a reachability analysis can be performed to identify event
sequences that result in failure.

4.6 Miscellaneous FT extensions
One particular extension that does not fit these categories was proposed by Fovino
et al. [FMC09], and integrates Attack Trees with FT. Attack Trees describe
vulnerabilities in a system that an attacker could exploit, and countermeasures
that could remedy these vulnerabilities.

Since an outside attack could cause a system failure, the combination of AT
with FT may provide a better estimate of the system failure probability, assuming
probabilities for attack scenarios can be provided.

The integration is performed by designating certain BEs as attack nodes, and
decorating these BEs with attack trees. The attack trees are then individually and
separately analyzed to determine the probability of a successful attack. Once this
analysis is complete, the FT is analyzed by substituting the computed probabilities
into the BEs.

Attack trees are sufficiently different from fault trees that we consider them be-
yond the scope of this thesis. An overview of attack trees and related methodologies
has been written by Kordy et al. [KPCS14].

4.7 Comparison
Tables 4.1 (page 84) and 4.2 (page 98) summarize the various extensions described
above, with strong points denoted with a plus. The meaning of the headers in
Table 4.2 is as follows:

96

Uncertainty How well the formalism can describe systems with uncertain proba-
bilities and/or structure.

BE Dependence How well the method can model systems in which the basic
events are not statistically independent.

Temporal Requirements How well the formalism can include requirements on
the sequences or durations of events.

Repairable To what extent the method can include repairable components and
descriptions of repair strategies.

Multi-state Whether the model can include components with more states than
just failed or not.

BE Prob. distribution Whether the model can describe systems in which the
basic events have failure distributions other than constant probability and
inverse exponential failure rate.

4.8 Conclusion
This section has presented many extensions to fault trees, supporting aspects
such as undertainty, stochastic dependencies between events, repairs, temporal
requirements, and stateful systems.

The various extensions support different kinds of analysis. Most support
quantitative analysis of certain measures, while some also provide qualitative
measures. A few extensions provide concrete tool support, but most only describe
the analysis technique and results for a small number of examples.

The large number of extensions, almost all incompatible with each other, can
make it difficult to decide which formalism is best suited to a particular system.
In [RSSR17], we have presented a metamodel that ameliorates a similar jungle of
variants in the formalism of attack trees in which also (dynamic) fault trees are
incorporated. In future work, this metamodel could be extended to cover many of
the FT extensions as well, providing a unified formalism and allowing combining
the best of all worlds.

97

Modeling

U
ncertainty

B
E

D
ependence

T
em

poral
requirem

ents

R
epairable

M
ulti-state

B
E

P
rob.

distribution Remarks
DFT with repair boxes [BCR04] + + + Parametric, simple repair policy

Repairable FT [CRFIV04] + Complex repair policies
Combined FT [CR05b, CR11] + + + Dynamic, complex repair policies

Nondeterministic RFT Allows nondeterministic
[BCRFH08, BFCRH09, BFCRH14] + repair choices

FT with Attack Tree [FMC09] + Models deliberate attacks
Fuzzy FT [TFLT83] + Models uncertain BE prob.

Fuzzy FT [Sin90] + + Special membership functions
Fuzzy FT [LW97] + Linguistic description

Fuzzy FT [KJG96] + Multiple expert estimates
Fuzzy FT [SCC06, Li08] + + Uncertain membership functions

Fuzzy FT [RK11] + + + Multi-state BEs
Fuzzy FT [EIO98] + + + Uncertain repair rates
Fuzzy FT [HTZ04] + + For large uncertainties
Fuzzy FT [PP94] + + Normally distributed rates

Extended FT [Buc99, Buc00b] + + + Multi-state BEs
Multistate FT [ZWST03] + + Multi-state FT

FT with mutual exclusion [TRSS00] + Mutually exclusive events
FT with dependent events [Vau02] + Stat. dependent events

BDMP [Bou02, Bou07, Bou08]1 + + + + + Complex dependencies
FT with AND-THEN [WM00] + Requirement of immediacy

DFT with simultaneity
[WBP07, WP09]2 + Requirement of simultaneity

Formal FT Semantics [STR02] + + + Includes delays
FT with Duration Calculus [Glu07] + + + Complex temp. requirements

Temporal FT [Pal02] + + Includes temporal logic
State-Event FT [KG04, Kai05] + + + + Combines FT and FSM

Table 4.2: Comparison of fault tree extensions

1Analysis tool: BDMP [Bou12]
2Analysis tool: Pandora [WP09]

98

Part II

Integrating maintenance into
fault trees

99

Chapter 5

Fault maintenance trees

Reliability-centered maintenance (RCM) [Mou97] is a major trend in infrastructural
asset management. Its goal is to improve maintenance planning by determining
the assets where maintenance is most needed, and maintaining these assets more
intensively than less critical objects. By focussing maintenance expenditure where
it is most effective, RCM aims to balance maintenance costs against system
dependability. This requires a good insight into the behaviour of the system w.r.t.
reliability, and into the effects of maintenance.

As explained in the preceding chapters, fault tree analysis (FTA) is an industry-
standard, widely-used technique to gain insight into system dependability. By
studying the failure behaviour of system components, and the interactions of these
components in leading to system failures, we can obtain various measures relevant
to the overall system dependability. These measures can be qualitative (e.g., cut
sets) or quantitative (e.g., reliability or availability).

Also discussed in previous chapters is the inclusion of repairs in FTA. Standard
fault trees support a simple model in which failed components are all simultaneously
repaired with repair times following simple probability distributions such as the
exponential distribution. Such models are relatively easy to analyze and obtain
the system availability (expected fraction of time where the system is not failed),
but their expressive power is limited as most realistic situations do not have the
resources to repair all components at the same time.

Section 4.3 describes various extensions to FTA supporting more advanced
repair models, mostly focussing on more elaborate descriptions of which components
can be repaired at the same time.

While such extensions more accurately model repairs in resource-constrained
situations, they still cannot model most practical maintenance situations. Real-life
maintenance is often much more complex than only repairs. Apart from repairing
failed components, practical policies often involve periodic inspections to determine
which components need repairs, preventive repairs before components have failed,
and interactions between components in both degradation and repair. For example,
the tires on a car are not simply replaced when they are completely worn our.
Rather, owners periodically examine the tire to check that they have enough tread
left, replace the tires when the tread is about to become too shallow, and replace
two or four tires at the same time even if some could be used for a few more weeks.

101

This chapter introduces fault maintenance trees (FMTs). These extend fault
trees with advanced maintenance policies, including wear-out behaviour of compo-
nents, and periodic inspections and repairs with complex policies to prevent and/or
undo such wear. Figure 5.2 illustrates how wear-out, inspections, and repairs are
included in an FMT.

An FMT consists of two or three components:

• A fault tree describing the failure behaviour of the system, extended with
more advanced descriptions of the wear behaviour of components. This FT
deviates from classic fault trees in two major ways: First, basic events are
not described by a single probability or distribution of failure times, but
rather can have multiple phases describing the degradation of the component
over time. Second, a new gate is introduced, called the rate-dependency
or RDEP gate. This new gate describes how failures of one component or
subsystem accelerate the failures of other components. The details of this
FT are described in Section 5.2.

• A maintenance policy describing inspections and repairs, specifying when each
occurs and under what conditions they trigger further maintenance actions.
This policy can include periodic inspections that examine the degradation
levels of one or more BEs and can trigger repair actions, and repair actions that
can occur periodically or in response to failed inspections. The maintenance
policy is detailed in Section 5.3.

• Optionally, a cost model describing the costs of failures of the various (sub)sys-
tems, and of the maintenance actions. These costs can depend on the length
of time a failure or maintenance action occurs, or can be fixed per occurrance.
If costs are provided, they can be used to compute the total costs for a given
maintenance policy, broken down into the different aspects. More details
about the cost model can be found in Section 5.4.

FMTs support the calculation of a range of important dependability metrics,
such as system reliability, availability, etc. under a given maintenance policy.
They also support metrics important to maintenance planning and optimization,
including expected cost over time. These measures permit the optimization of a
maintenance policy w.r.t. certain goals, such as minimal cost or maximal availability
within a given budget.

Technically, the analysis of FMTs is realized via statistical model checking
[LDB10], a state-of-the-art Monte Carlo simulation technique that allows the
various metrics to be computed efficiently and with statistical confidence intervals.

This chapter provides the methodological underpinnings of the industrial case
studies in Chapters 7 and 8.

102

Failure-based

Preventive

Corrective

Use-based

Condition-based
Maintenance

Time-measured
Activity-measured
(e.g., mileage)

Predictive

Figure 5.1: Overview of maintenance types and schedules.

Origin of the chapter. This chapter describes FMTs as introduced in:

• Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. “Fault
maintenance trees: reliability contered maintenance via statistical model
checking”. In Proceedings of the Reliability and Maintainability Symposium
(RAMS). IEEE, January 2016. doi: 10.1109/RAMS.2016.7447986, isbn:
978-1-5090-0248-1.

Organization of the chapter. Section 5.1 discusses maintenance concepts and
how they relate to fault trees. The modeling of degradation in FMTs is discussed in
Section 5.2, and the modeling of FMT maintenance policies in Section 5.3. The cost
model used in an FMT is briefly described in Section 5.4. Finally, the analysis of
FMTs is described in Section 5.5 before ending with the conclusion in Section 5.6.

5.1 Maintenance concepts
Most long-lived systems require some level of maintenance to keep up performance
and avoid premature failure. This maintenance ranges from very simple, such as
changing the battery in a smoke detector every year, to very complex overhauls
of entire power plants. This section provides an explanation of maintenance of
physical systems, particularly as it is applied in the railway industry. We first
discuss what kinds of maintenance are applied, and then how this maintenance is
scheduled. An overview of the policies and schedules can be seen in Figure 5.1.

Types of maintenance. Maintenance actions can be broadly divided into two
categories: preventive and corrective maintenance [Ebe97]. Preventive maintenance
is performed before a failure (of a component) occurs, with the aim of reducing
the likelihood of a failure in the future. Corrective maintenance is performed after
a failure has already occurred, with the goal to restore the component or system
to a functioning state.

103

https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986

Failure, here, can be defined in various ways, such as physical breakage, or
degradation below some specified minimal performance. In this chapter, we define
failure as the inability of a component or (sub)system to perform one or more of
its required functions within the overall system under consideration.

Note that component failures can be distinct from system failures. Many
systems are designed with some level of redundancy, such that not all components
are required for the system to operate. For example, a datacenter typically has
redundant power supplies, such that one supply can fail while the datacenter
remains fully operational. How such component failures interact to cause system
failures is described by a fault tree, as described in Chapter 2 and Section 5.2.

The choice of which type of maintenance to apply can depend on various factors,
including the different costs of failures and maintenance actions, and whether the
components are even able to be preventively maintained. In cases where failures
are much more expensive than maintenance, such as the critical components of
airplanes, preventive maintenance is almost always cost-effective. Conversely, when
failures are not very expensive compared to maintenance, such as the lightbulbs in
your home, corrective maintenance is often a better option. Some failures, such as
lightning strikes, are difficult or impossible to prevent using maintenance and must
be solved correctively, when they happen.

Maintenance planning. Once it has been established that some preventive
maintenance needs to be performed, one needs to decide when to perform it.
Broadly speaking, we can identify three methods of planning: use-based, condition-
based, and failure-based maintenance [Git92].

Use-based maintenance is the most basic type of maintenance planning: It
performs the specified task after some relevant unit of use, such as elapsed time
or miles driven. We note here that ‘use’ is a fairly abstract concept, and does not
necessarily refer to the system being active. For example, a rubber hose may need
to be replaced after a specific time has elapsed, whether the hose has been actively
used or lying on a shelf.

Condition-based maintenance is more elaborate, and specifies that certain
maintenance must be performed based on the condition of the system. In some
cases, the relevant aspects of this condition are self-evident, such as when a smoke
detector starts beeping to indicate that its battery is low. Less obvious condition
may require specific actions to determine, such as measuring the pressure in a
car’s tire. In the latter case, a combination of use-based and condition-based
planning is often used, where inspections are performed on a use-based schedule
and the outcome of these inspections is used for a condition-based decision to take
maintenance actions.

A recent trend in maintenance planning is so-called predictive maintenance,
where the current (and sometimes historical) state of the system is used to decide
when in the future to perform the next inspection or maintenance action. This is a

104

𝜆1 𝜆2 𝜆3

(a) Traditional fault tree

ℐ

ℛ

(b) Fault maintenance tree

Figure 5.2: Illustration of how fault maintenance trees extend tradi-
tional (static) fault trees by adding more basic events with degradation and
inspection and repair modules.

particular kind of condition-based planning, where the plan is updated based on
current observations.

Finally, failure-based maintenance is typically used for corrective maintenance.
Here, action is only taken once a failure occurs. Such a maintenance policy is also
called ‘run-to-failure’ [Blo05]. Note that while failure-based plans almost always
specify some corrective action after a failure, preventive actions can be scheduled
for the same time. For example, if the battery of one smoke detector is empty, it is
likely that other batteries (installed at the same time) are also nearly empty. It is
then more efficient to replace all the batteries at once, rather than to wait for each
to fail over the course of a few weeks.

5.2 Fault tree modeling
Aside from a maintenance plan, FMTs contain a model of the degradation of the
components of the system, and how failures of these components interact to cause
(sub)system failures. Chapter 2 describes fault trees in general, this section explains
how they are extended in FMTs to cover more complex degradation patterns.

As described in Chapter 2, fault trees are graphical descriptions of the propa-
gation of component failure to failure at system level. In classic fault trees, the
failures rates of components are assumed to be constant over time. In practice,
however, several factors can change these failure rates: 1) physical components
wear out over time, leading to increased failure rates as the component nears the
end of its lifespan; 2) components can be subjected to increased stress when other
subsystems fail, e.g., the failure of a cooling pump in a redundant system can
require the remaining pump to perform more work, leading to an increased failure
rate; and 3) periodic maintenance can prevent or even remove wear of component,

105

leading to decreased failure rates.

5.2.1 Basic events
Basic events in FMTs support arbitrary distributions of failure times. Concretely,
we require that the degradation of the component can be described in a finite
number of states with probability distributions over the time spent in each state.
For simple components that are not subject to preventive inspections or repairs,
the states can simply be ‘operational’ and ‘failed’. If inspections are needed, the
outcomes of an inspection can only depend on the state of the component, thus
generally requiring more than two states (e.g., ‘good’, ‘noticably worn’, and ‘failed’).
The BEs move between these states at times governed by probability distributions.
Most commonly these are exponentially distributed, making the BE model a
Markov chain (usually describing a hypoexponential distribution, i.e., the Markov
chain consists of a sequence of states) but FMTs allow arbitrary distributions of
transition times including Weibull and normal distributions.

Repairs are events triggered externally to the BE, causing it to return to a less
degraded state. In many cases, repairs return the component to a state as good as
new, e.g., by replacing the battery in a sensor. Such a BE is shown in Figure 5.3a.
More complex components can be affected by different repair actions, such as a
complete replacement returning to the as-good-as-new state and a partial repair
that leaves to component working but does not fully remove the wear. A more
complex BE is shown in Figure 5.3b.

5.2.2 Gates
The gates of an FMT describe how events (basic events or intermediate events of
other gates) propagate through the system, i.e., how combinations of events lead
to subsystem failures and eventually the failure of the entire system.

Apart from the gates of standard fault trees, FMTs introduce a new gate: the
rate-dependency (RDEP) gate. This gate is described in detail in Section 5.2.3.

The traditional gates are the AND, OR, and VOT(k/N) gates failing, respec-
tively, when all, any, or at least 𝑘 of their children fail. Since the basic events of
an FMT support repairs, the gates can also become operational again when the
number of currently-failed inputs becomes sufficiently low. The current state of
these static gates is thus determined entirely by the current states of their children.

Figure 5.4 shows the behaviour of an AND-gate with two children. The gate
listens for failure and repair signals of both children, keeping track of how many
children are currently failed. When both children are failed, the gate emits its own
failure signal. If, after the gate has failed, any of the children are repaired, the
gate also emits its repaired signal. The other gates are defined analogously to the
AND-gate (following the semantics described in [BCS07c]).

106

𝑠0

Good

𝑠1

Okay

𝑠2

Degraded

𝑠3

Failed
fail!

repair?

(a) BE with four degradation phases and perfect repair.

𝑠0

Good

𝑠1

Okay

𝑠2

Degraded

𝑠3

Failing

𝑠4

Failed

thres!
fail!

repair?

replace?

(b) BE with five degradation phases, detectable degradation after state 𝑠2, imperfect
repair and perfect replacement.

Figure 5.3: Basic diagrams of the behaviour of repairable basic events
with degradation. The dashed arrows indicate transitions occurring at stochastic
times, the solid arrows are immediately taken when a repair action is performed.
The cyan text indicate labels that are used to communicate with other elements of
the FT.

107

fail[c1
]?

fail[c2]?

fail[c2]?

fail[c1
]?

fail[id]!

repaired[c2]?

rep
air

ed[
c1]
?

repaired[
id]!

repaired[id]!

repaired[c1]?

repaired[c2]?

Failed

Figure 5.4: Automaton of an AND-gate with two children (with IDs c1
and c2) Only when fail signals have been received from both children, does the
gate emit its own signal fail[id]. If either child emits a repaired signal, the gate
responds by no longer treating that child as failed. If this occurs after the gate has
failed, it emits its own repaired[id] signal.

The introduction of degradation into FMTs does not affect the traditional
gates. One could imagine cases where multiple degraded components have similar
effects as a broken one. For example, if multiple pumps are used to provide
cooling water, multiple pumps producing a reduced flow has a similar effect to
one pump failing entirely. While current FMTs do not support such cases, it
would be a straightforward extension to introduce gates that can depend on the
exact degradation level of their children, and even gates that can have multiple
degradation levels themselves.

RDEP

T

𝛾
A

𝛿
B

Figure 5.5: RDEP gate where the failure of the trigger event T causes basic
event A to wear 𝛾 times faster, and basic event B 𝛿 times.

108

5.2.3 Rate dependencies
Rate dependency (RDEP) gates are a new gate type, modeling situations where
the failure or degradation of one component affects the degradation rate of another.
Such situations commonly occur in redundant systems, where the failure of one
redundant element leads to increased use and thus wear of the other element, and
systems affected by common cause failures where the presence of some harmful
condition, such as excess vibration, leads to accelerated wear of many components.
In contrast, RDEPs can also be used to model reduced failure rates, e.g., if a power
supply fails, the components powered by that supply stop working and also stop
incurring wear.

The depiction of the RDEP gate is shown in Figure 5.5. Each RDEP gate has
a single input called its trigger and one or more BEs called the dependent children,
each with its own acceleration factor. In the formal definition, BEs that are not
dependent children are assigned an acceleration factor of 1.

When the trigger input is active, the failures of the dependent children proceed
at an altered rate. If the children follow exponential distributions, this can be
viewed as multiplying the rate of this distribution by the acceleration factor. For
other distributions, we multiply the speed at which time passes for that child by
the acceleration factor. When the trigger input becomes inactive, the children
resume wearing at their normal speeds.

Formally, the acceleration due to an RDEP alters the failure time distribution
in the following manner: Suppose we have a BE with a failure time given by 𝑇𝐴
governed by a cumulative probability distribution 𝐷 (i.e., ℙ(𝑇𝐴 ≤ 𝑡) = 𝐷(𝑡)), and
this BE is affected by an RDEP gate with factor 𝛾 and a trigger occurring at time
𝑇𝑇 governed by some probability distribution. We then have, assuming that the
trigger is not repaired, that the new failure time becomes:

𝑇𝐴′ = {
𝑇𝐴 if 𝑇𝐴 < 𝑇𝑇
𝑇𝑇 + 1

𝛾 (𝑇𝐴 − 𝑇𝑇) otherwise

In other words, the failure distribution proceeds unaffected until time 𝑇𝑇, and
if BE 𝐴 is not failed at that time, the remaining time is divided by the factor 𝛾. If
trigger 𝑇 is repaired at time 𝑇𝑅, the remaining time after that is multiplied by 𝛾
to return to the normal rate, i.e.:

𝑇𝐴″ = {𝑇 ′
𝐴 if 𝑇 ′

𝐴 < 𝑇𝑅
𝑇𝑅 + 𝛾(𝑇 ′

𝐴 − 𝑇𝑅) otherwise

This procedure of failure and repair of the trigger can be repeated multiple
times if needed.

There is no restriction on the number of RDEPs that can simultaneously affect
one BE, and all acceleration factors are multiplied. Thus, if a BE is accelerated by

109

Insufficient compressor capacity

Bearings
worn

Screws
worn

Air filter
blocked

Oil polluted

RDEP

×3 ×2

ℛ2

ℛ1

ℐ

Figure 5.6: Example of a fault maintenance tree describing part of a pneumatic
compressor. The basic event ‘Oil polluted’ accelerates the events ‘Bearings worn’
and ‘Screws worn’. The repair boxes indicate that ‘Oil pollution’, ‘Bearings worn’,
and ‘Screws worn’ are repaired when the top event occurs, while ‘Air filter blocked’
is repaired based on an inspection of the filter itself.

one RDEP with a factor 3 and another RDEP with a factor 1
2 , the BE will fail 3

2
times faster than normal when both RDEPs are triggered.

Figure 5.6 shows an FMT with one RDEP gate, where ‘Oil polluted’ is the
trigger, and ‘Bearings worn’ and ‘Screws worn’ are the dependent children.

5.2.4 Formal definition
The formal definition of a fault maintenance trees extends the formal definition of
an FT (described in Section 2.2.2) with multi-state basic events, RDEP gates, and
maintenance modules.

First, we extend the set of gate types to include RDEP gates. We define an
RDEP gate to have a single acceleration factor 𝛾, as RDEPs with children with
different rates can be trivially split up into multiple RDEP gates, each with a single
child and its rate. We thus define GateTypes = {AND,OR}∪{VOT(k/N) | 𝑘,𝑁 ∈
ℕ>1 ∧ 𝑘 ≤ 𝑁} ∪ {RDEP(𝛾) | 𝛾 ∈ ℝ+}.

We now define a fault maintenance tree:

Defintion 10 A fault maintenance tree is a tuple ℱ = ⟨BE,TE, 𝑆,𝐷,𝐺, 𝑇 , 𝐼, 𝑃 ,

110

𝐶⟩ consisting of the following components:

• BE is a set of basic events.

• TE ∈ BE is the top level event.

• 𝑆 ∶ BE → ℕ specifies, for each BE, how many degradation states it has.
For a traditional BE with exponentially distributed failure times, this is 2
(failed and non-failed), BEs with degradation over time are described with
more states. The initial degradation state is state 0, the failed state of BE
𝑏 is 𝑆(𝑏).

• 𝐷 ∶ BE → ℕ → ℕ → (ℝ+ → ℝ+) specifies the distributions of transition
times between the states. Specifically, 𝐷(𝑏, 𝑖, 𝑗) is the cumulative distribution
function of the transition time from state 𝑖 to state 𝑗 of BE 𝑏. E.g., if 𝑏
is an exponentially distributed BE with parameter 𝜆, then 𝑆(𝑏) = 1 and
𝐷(𝑏, 0, 1)(𝑡) = 1 − e−𝜆𝑡.
We require that the continuous-time Markov chain specified by every 𝐷(𝑏) is
acyclic, i.e., if 𝐷(𝑏, 𝑖, 𝑗) ≠ 0, there is no sequence ⟨𝑖 = 𝑖0, 𝑖1,… , 𝑖𝑘−1, 𝑖𝑘 = 𝑗⟩
such that ∀𝑙<𝑘𝐷(𝑏, 𝑖𝑙, 𝑖𝑙+1) ≠ 0.

• 𝐺 is a set of gates, with BE ∩ 𝐺 = ∅. We write E = BE ∪ 𝐺 for the set of
elements.

• 𝑇 ∶ 𝐺 → GateTypes is a function describing the type of each gate.

• 𝐼 ∶ 𝐺 → E ∗ describes the (ordered) inputs of each gate. The ordering is
relevant only for the RDEP gate, where the first input denotes the trigger,
and the second input denotes the dependent child.

• 𝑃 is a maintenance policy, as will be explained in Section 5.3.

• 𝐶 is a cost model, as will be explained in Section 5.4.

If we denote the static gates as SG = {𝑔 ∈ 𝐺 | ∄𝛾 ∶ 𝑇 (𝑔) = RDEP(𝛾)}, we
require that the graph formed by ⟨BE ∪ SG, 𝐼⟩ is a directed acyclic graph with a
root TE.

We note that, if an FMT does not contain any RDEP gates, the tuple
⟨BE, 𝐺, 𝑇 , 𝐼⟩ is a static fault tree.

111

5.3 Maintenance modeling
Maintenance policies in FMT consist of two major elements: inspection modules,
which periodically examine the state of one or more BEs and which initiate repair
actions when any of those BEs is degraded beyond some threshold, and repair
modules, which return one or more BEs to less degraded states upon activation
by an inspection module, the failure of a BE, or after a certain amount of time.
The timed automata describing the IM and RM are shown in Figures 5.7 and 5.8,
respectively.

In the graphical form, we denote inspection and repair modules using square
boxes containing ℐ or ℛ for inspections and repairs , respectively. Inspection
modules are connected to the events they inspect, and to any repair modules they
can activate. Repair modules are connected to the elements whose failures initiates
a repair, and the elements repaired by the module. To prevent ambiguity, we
connect triggering elements to the top of the module, and repaired events to the
bottom.

Inspection modules are usually decorated with a frequency denoting how often
the inspection is performed, and threshold phases for each of the inspected elements
indicating when the inspection triggers further action. If, at the time of an
inspection, at least one of the inspected events is at or beyond its threshold phase,
all attached modules are actived.

Repair modules may be decorated with a frequency as well, if repairs are carried
out on a regular schedule. Repair modules are further decorated with the states
to which the repaired BEs return after the repair is performed. When the repair
module is activated, either by its own timer or by an inspection, the BEs are placed
back in these states, possibly also changing the states of their parent gates.

The example in Figure 5.6 shows a maintenance policy with three modules: A
repair module ℛ2 that repairs the BEs ‘Oil pollution’, ‘Bearings worn’, and ‘Screws
worn’ whenever the top event occurs; an inspection module ℐ periodically checking
the air filter; and a repair module ℛ1 replacing the air filter when the inspection
fails.

More complex maintenance policies (e.g., where inspections trigger corrective
actions only when multiple BEs have failed) can be described by constructing
subtrees in the FT describing the exact conditions of the inspection or repair.

Formal definition. We will now define the maintenance policy 𝑃:

Defintion 11 A maintenance policy is a tuple 𝑃 = ⟨𝑀, 𝑇𝑃, 𝐼, 𝑇𝑅, 𝑅,𝐴⟩ with the
elements:

• 𝑀 is a set of maintenance modules.

• 𝑇𝑃 ∶ 𝑀 → ℝ+ ∪ {⊥} is either a time describing the interval at which the
module is activated, or ⊥ for modules that are only activated externally.

112

x ≤ 𝑇period

x ≤ 𝑇period

thres[id]?

force[rep_id]!
x = 𝑇period
x := 0
𝐶total += insp_cost
𝐶maint += insp_cost

x = 𝑇period
x := 0
𝐶total += insp_cost
𝐶maint += insp_cost

Figure 5.7: Timed automaton for an inspection module with ID ‘id’: Every
𝑇period time units, an inspection is carried out. If the BEs being inspected have not
reached the threshold for this inspection (i.e., sent a thres[id]! signal), the module
takes the self-loop on the left and incurs a cost without taking further action. If
the threshold has been reached by any of the inspected BEs, the module will be in
the location on the right when performing the inspection, and will also incur its
cost, but will now send a force[rep_id]! signal to the repair module to immediately
start its repair.

x := 0

x = 𝑇period

x ≤ 𝑇period force[id]?
x := 0

x ≤ Trepair

x = Trepair

repair[id]!

x := 0
𝐶total += rep_cost
𝐶maint += rep_cost

Figure 5.8: Timed automaton for a repair module with ID ‘id’: A repair
is started every 𝑇period, or whenever a force[id] signal is received. The repair takes
Trepair time, after which a signal repair[id] is emitted to indicate that this repair is
complete, the repair costs are added, and the automaton resets. All BEs affected
by the repair listed to this repair[id] signal and transition to the repaired state
upon receiving it.

113

• 𝐼 ∶ 𝑀 → 𝒫(𝐸 ×ℕ) describes the set of elements to inspect when the module
is activated, and the threshold state for each of these events. Gates are
considered to have two states: 0 for not failed and 1 for failed. If any of
the elements is at or beyond its threshold, the inspection is said to be failed.

• 𝑇𝑅 ∶ 𝑀 → ℝ+ is the repair time. That is, the time taken after a failed
inspection or external activation, before the effects of 𝑅 occur.

• 𝑅 ∶ 𝑀 → BE → ℕ → (ℕ ∪ ⊥) is a function describing the repair effects:
It gives, for each module, BE, and current state of the BE, the new state
of that BE after repair. If 𝑅(𝑚, 𝑏, 𝑖) = ⊥, this means that the BE is not
affected by the repair in its current state. Note that this is different from
𝑅(𝑚, 𝑏, 𝑖) = 𝑖, as the latter also resets the probability distribution of the
next transition time.
The repairs are performed after the abovementioned repair time 𝑇𝑅 after a
failed inspection or external activation.

• 𝐴 ∶ 𝑀 → 𝒫(𝑀) describes, for each module, a set of other modules to
immediately activate if the current module is activated and at least one
inspection fails.

This definition allows inspection modules and repair modules to be described in
the same structure, and allows hybrid inspection/repair modules. If a separation
is desired, one can define an inspection module as a module 𝑖 in which ∀𝑏, 𝑥 ∶
𝑅(𝑖)(𝑏, 𝑥) = 𝑥 (i.e., all BEs are left in their current state and not repaired) and
a repair module as a module 𝑟 in which 𝐼(𝑟) = ∅, (i.e., a module that does not
perform any inspection of its own).

5.4 Costs
FMTs can describe two kinds of costs incurred by maintained systems: cost of
failure and cost of maintenance. These can be further broken down into failure costs
of (sub)systems down to component level, and costs of the various maintenance
actions.

Failure costs are incurred when an element of the fault tree is in its failed state.
The cost can be instantaneous (i.e., incurred at the moment the failure occurs) or
time-based (i.e., incurred per unit time until the failure is corrected). Multiple
costs can be incurred at the same time, e.g., when an expensive component breaks
leading to a system failure, the component can incur its own cost, as well as the
cost of the system failure.

We note that we generally use failure costs only for the cost of the consequences
of that failure, not the cost of the failed component (which is part of the repair
cost).

114

Maintenance actions can similarly be decorated with individual costs, for each
inspection and repair action. Should it be desirable to have a different cost for,
e.g., a failed inspection than for a successful inspection, this can be modeled by
introducing a repair action that has no consequences but has a non-zero cost.
Similar modeling patterns can be used for, e.g., different replacement costs for
failed and non-failed component.

Like failure costs, maintenance costs can be instantaneous per execution of the
action, and/or time-based depending on how long the maintenance action takes.
This is most useful when the action take stochastic amounts of time rather than
the fixed time described in this chapter.

Finally, costs are tracked in the model at different levels of granularity: A total
cost is tracked, as well as separate costs for failures, inspections, and repairs.

Formal definition. Recall from Section 5.2 that we defined an FMT as a tuple
ℱ = ⟨BE,TE, 𝑆,𝐷,𝐺, 𝑇 , 𝐼, 𝑃 , 𝐶⟩ where 𝐶 is a cost model. We now formally define
this cost model (recalling that E = BE ∪ 𝐺 denotes the set of all basic events and
gates) as follows:

Defintion 12 A cost model is a tuple 𝐶 = ⟨𝐶IF, 𝐶TF, 𝐶𝑀⟩ where:

• 𝐶IF ∶ E → ℝ+ describes the instantaneous cost of an element failing.

• 𝐶TF ∶ E → ℝ+ describes the per-unit-time cost of an element being failed.

• 𝐶IM ∶ 𝑀 → ℝ+ describes the instantaneous cost incurred when the given
maintenance module is activated.

• 𝐶RM ∶ 𝑀 → ℝ+ describes the per-unit-time cost incurred while the given
maintenance module is active (i.e., repairing).

Note that this cost model does not provide for different costs depending on
whether an inspection causes a repair or note. If such a difference is desired, it can
be achieved by splitting the maintenance modules into an inspection module and a
repair module.

5.5 FMT analysis via statistical model checking
Quantitative analysis of FMTs is performed using statistical model checking of
stochastic timed automata (STAs) [BLR05]. That is, we first convert the FMT
into a network of STAs, and then use the statistical model checker Uppaal-SMC
[BDL+12] to compute the requested metrics.

A TA is a model consisting of locations and transitions between these locations.
The locations represent control states of the system, and transitions describe

115

situations when the system may move from one location to another. Constraints
on the edges and invariants on locations may be used to block or force certain
transitions at certain times. These constraints and invariants are specified in terms
of clocks, which increase linearly over time but may be reset when a transition
is taken. Stochastic timed automata extend TAs by allowing transition times to
be governed by probability distributions, not only by nondeterminism. Multiple
(S)TAs can be combined using synchronisation on transitions, where some edges
waiting for a signal sig? can only be taken simultaneous with a transition in
another STA emitting the corresponding signal sig!.

An example of a TA can be seen in Figure 5.7, describing an inspection module.
The initial location is the one on the left. Here, the clock 𝑥 denotes the time
since the previous inspection, and increases until it is reset when an inspection is
performed. The invariant on the initial location prevents the TA from remaining
in this location when the time to perform an inspection has been reached. Before
this time, the guard on the self-looping transition prevents a premature inspection.
When the clock 𝑥 is equal to the time 𝑇period, the self-loop is taken and the clock is
reset. The edge to the location on the right is a synchronization transition on the
channel thres, and is taken when a component has degraded enough to take the
corresponding transition in its STA. After this, the IM still waits for the inspection
time, but the transition back to the initial location now also synchronizes with
the repair module to begin a repair. Finally, both transitions corresponding to
performing an inspection add a fixed amount insp_cost to a global counter.

Each element of the FMT (i.e., each BE, IM, RM, and gate) is assigned a
unique ID, and a template of the appropriate STA is instantiated with the specific
parameters for the element. The STAs for the basic event, repair module, inspection

G

𝐵

fail[B]
repaired[B]

T

RDEP
fail[T]

repaired[T]

fail[RDEP]
repaired[RDEP]

ℛ2

fail[G]
repaired[G]

repair[ℛ2]
ℛ1

ℐ

thres[ℐ]

force[ℛ1]

repair[ℛ1]

Figure 5.9: Illustration of the signals used to communicate between the
different FMT elements. The arrows indicate the sources and destinations of
the signals.

116

module, and AND-gate are shown in Figures 5.10, 5.8, 5.7, and 5.4 respectively.
The other gates are modeled analogously to the AND-gate. The IDs are used
to instantiate the synchronization signals. The various signals are illustrated in
Figure 5.9.

The STA is then analyzed using the UPPAAL model checker. This approach
has the advantage of allowing both quantitive analysis of the metrics described in
Section 5.5.1 using statistical model checking, and qualitative analysis and validation
of the structural correctness of the model using traditional model checking. The
latter enables us to check properties of the model such as that every BE can be
repaired, that every gate can fail, etc.

Qualitative checks require a state-space exploration of the model, which leads to
exponential time-complexity as the number of FMT elements increases. Fortunately,
the statistical model checker does not need to generate the full state space, and
thus its computation time is relatively independent of the number of elements,
but rather grows with the desired accuracy of the result. The downside of this
approach is that the results are not exact values, but rather statistical confidence
intervals. This is a particular problem when tight confidence bounds are desired,
as the computation time required can grow very large (Chapter 6 explains this
problem in more detail and presents an approach to ameliorate it).

5.5.1 Metrics
After converting an FMT into an STA, various metrics of the system can be
computed. We list the most important ones below:

Reliability is defined as the probability of the system failing within a given time
window. Formally, if we describe the behaviour of the system described by
a fault tree 𝐹 using 𝑋𝐹(𝑡) = 1 when this system has failed at time 𝑡, and
𝑋𝐹(𝑡) = 0 if it has not, the reliability is defined as Re𝐹(𝑡) = ℙ[𝑋𝐹(𝑡) = 0].
Conversely, we use the term unreliability for the probability that the system
has failed.
If we denote the failed state of the top event as T.Failed, the unreliability cor-
responds to the formula ℙ[𝑥 ≤ 𝑡]{⋄𝑇 .Failed} (in UPPAAL’s query language,
“Pr[x <= t] (<> T.failed)”).

Availability is the expected fraction of time in a given time window that the
system is functioning (equivalently, the steady-state probability that the
system is functioning). Formally, we say 𝐴𝐹(𝑡) = 𝔼 [1

𝑡 ∫
𝑡

0
𝑋𝐹(𝑥)d𝑥].

To compute the expected fraction of time the system is up, we introduce
an auxiliary clock 𝑎 that is stopped, but not reset, while the top event is in
the failed location (and resumed when a repair returns the top event to the
functioning location). The availability within time 𝑡 can then be expressed as

117

the UPPAAL query “E[x <= t, N] (max: a / t)” where N is the number
of simulation runs desired.

Expected number of failures denotes the expected number of times the top
event occurs within a given time bound. Formally, we define 𝐼𝐹(𝑡) to be the
indicator function that is a Dirac delta every moment the system fails, i.e.:

𝐼𝐹(𝑡) = {𝛿 if 𝑋𝐹(𝑡) = 1 ∧ lim𝜖↓0 𝑋𝐹(𝑡 − 𝜖) = 0
0 otherwise

The expected number of failures before time 𝑡 is then ENF𝐹(𝑡) = ∫ 𝑡
0
𝐼𝐹(𝑥)𝑑𝑥.

To measure this value, we introduce a variable 𝑛 that is incremented every
time the top event enters its failed state, and use the query “E[x <= t, N]
(max: n)”.

Expected cost denotes the expected cost incurred within a given time frame.
While not very useful for FTs without maintenance, costs are very useful
when comparing different maintenance strategies. Typically costs are incurred
either on a per-event basis, e.g. a fixed cost to replace a broken component,
or per unit time, e.g. lost productivity while a system is down. Formally, we
write 𝐶(𝑡) for the cumulative cost incurred up to time 𝑡, hence the expected
cost is either 𝔼[𝐶(𝑡)] for a fixed time window, or 1

𝑡 𝔼[𝐶(𝑡)] for the average
cost per unit time.
The STA for an FMT tracks costs in several variables: One for total cost,
others for the total costs of inspections, total costs of failures, etc. To find the
expected total cost of the system, we use the query “E[x <= t, N] (max:
C_total)”. The other costs can be found by replacing C_total by C_insp,
C_failure, etc.

118

C

C

n += 1
fail[id]!
phase == n_phases

𝜆

thres_phase == n_phases
thres[insp_id]!

thres_phase
!= n_phases

repair [rep_id]?

repaired[id]!
phase := 1

repair [rep_id]?
phase := 1;

𝜆 ∗= 𝛾; fail[rdep_id]?

repaired[rdep_id]?
𝜆 /= 𝛾;

fail[rdep_id]?
𝜆 ∗= 𝛾

repaired[rdep_id]?
𝜆 /= 𝛾

C C

phase < n_phases

phase != thres_phase
thres[insp_id]!

phase == thres_phase

phase += 1

Figure 5.10: STA of a basic event with one rate-dependency and a failure
time governed by a (n_phases, 𝜆)-Erlang distribution, with a threshold for the
inspection at phase thres_phase. The counter phase denotes the current phase,
and is incremented according to exit rate of the initial location. If the current phase
is equal to the threshold phase, a signal thres[insp_id] is sent to the listening IM.
When the current phase equals the number of phases n_phases in the distribution,
the STA emits a signal fail[id] to all listening gates, possibly emits the threshold
signal, and waits for a signal repair [rep_id] from the RM. When this repair signal
is received, the STA emits a signal repaired[id] to any listening gates, reset the
current phase to 1, and returns to the initial location. The signal fail[fdep_id]
triggers an acceleration of the degradation due the the failure of an FDEP trigger,
and repaired[fdep_id] return the rate to normal.

119

5.5.2 Unified analysis via model-driven engineering
To automate the analysis of FMTs as well as other formalisms of fault trees, we apply
techniques from model-driven engineering (MDE). MDE is a software engineering
approach that uses models as first-class citizens, providing structured ways to
describe such models (using metamodels) and special transformation languages
to perform model transformations, converting and combining models into other
models.

Using MDE, we allow fault trees to be converted between several tools, we
support combinations of features from different fault tree formalisms as well as from
attack trees (a similar formalism in security), and we provide model transformations
allowing FTs and FMTs to be analyzed in UPPAAL.

Our approach uses the metamodels and model transformations for (attack-)
fault trees described in [RSSR17], extended with a new metamodel describing
the maintenance policies of FMTs. We also extend the model transformations to
transform an FT with a maintenance policy (together forming an FMT) into a
model that can be analyzed in UPPAAL.

Fault tree metamodel. To define models of FTs—or of any other domain—we
need to specify the language of such models. In MDE, this language is specified
using a metamodel, which captures the concepts and behaviour of fault trees
and defines the permitted structure to which its models must adhere. Following
standard terminology, we say that a model is an instance of its metamodel.

Figure 5.11 graphically shows the metamodel of an (attack-)fault tree in a
UML-like diagram. The metamodel is divided into a structure part on the left,
describing the basic events and gates that make up a fault tree, and a values part
on the right, describing how attributes such as failure rates are attached to the
basic events.

The root of a model of an FT is the Tree class, shown at the top of the
figure. The containment relation to Node shows that a tree has one or more Nodes
(describing elements of the tree), while the reference relation shows that one of
these Nodes is designated the root of the tree.

The Node class is at the heart of the structure metamodel, modeling a basic event
or gate. Each Node has several attributes: •id providing a unique identifier for the
node, •label providing a human-readable description, •nature describing whether
the element is a deliberate attack (from attack trees) or a randomly-occurring fault
(from fault trees), and •role specifying whether the event contributes to the system
failure or counteracts it (a defense node in attack trees).

The Connector describes what type of gate the element is. A basic event has
no connector, while a gate has a connector of its type (AND, OR, etc.).

On the right of the diagram is the attributes metamodel, attaching concrete
values to elements of the fault tree. Each Attribute is attached to a Node, and

120

Purpose

TypeDomain
– name : EString

ValueAttribute

[0..*] attributes

[0..1] purpose

[1..1] valueType

[1..1] value

CostPurpose
– costType : CostType

TimePurpose
– timeType : TimeType

JavaType
– valueClass : EJavaClass

RealType

JavaObjectValue
– value : EJavaObject

RealValue
– value : EDouble

Node
– id : EString
– label : EString
– nature : Nature
– role : RoleType

[1..1] node

Tree Connector[1..*] nodes

[1..1] root

[0..1]
connector

OR AND FDEP KofN
– thresh : EInt

Nature
– Attack
– Fault
– Hybrid

CostType
– ON_ACTIVATION
– ON_COMPLETION
– WHILE_ACTIVE

Figure 5.11: Partial metamodel of an (attack)-fault tree

121

decorates that node with a Value. The type of this value is given by a Domain, e.g.,
a domain of type RealType always has attributes with values of the class RealValue.
Domains also describe what the attributes represent, using the Purpose class. For
example, a domain describing the rate of the exponential distribution of the time
to failure of a basic event will have a TimePurpose with type EXPONENTIAL.

Maintenance metamodel. To add maintenance to a fault tree, and thus create
an FMT, we developed the metamodel shown in Figure 5.12. At the top right,
the MaintenancePolicy class is shown. Such a policy consists of a set of Modules,
which perform inspections and/or repairs. Each module has a Condition it needs
to activate, referring to a time delay (DelayCondition), degradation state of an FT
node (NodeCondition), or activation by another module (ActivationCondition).
Boolean combinations of conditions can be made using the CombiningCondition.

Once a module is activated, it has an Effect. These are either triggers of
other modules (via TriggerEffects) or repairs of FT nodes (via RepairEffects).
Repairs and inspections refer to particular states of a node using the NodeState
class, which can be a LinearNodeState for nodes with linear degradation (e.g.,
nodes with Erlang-distributed failure times) or model-dependent descriptions such
as PhaseTypeState for nodes described by phase-type models with discrete states.

We note that all FMT-specific elements are contained in this maintenance
metamodel. A major benefit of this approach is that it is possible to take fault
trees developed for existing tools (e.g., DFTCalc [ABvdB+13]) that can already
be converted into the fault tree metamodel [RSSR17], and add maintenance as a
separate model.

Translation to UPPAAL. Once an F(M)T has been constructed following the
metamodels above, model transformations can be applied to convert it to other
types of models. Translations have already been developed to convert attack trees
between various analysis tools [KSR+18], as well as from (attack-)fault trees to
UPPAAL [SYR+17]. We extend the latter translation to include maintenance.

A model transformation follows the general structure shown in Figure 5.13. We
take a model that is an instance of a particular metamodel (here, a combination of
the attack-fault tree and maintenance metamodels), use a transformation engine
to apply transformation in a transformation language (we use the Epsilon Trans-
formation Language [KPP08]), and obtain an instance of the target metamodel
(here, the UPPAAL metamodel [SYR+17]).

A snippet of the model transformation is shown in Figure 5.14. Here, we see
that we first define a rule to transform a Tree from the attack-fault tree metamodel
(AFT) to a model of a network of timed automata (NTA) of the UPPAAL metamodel.
This rule creates various UPPAAL-related objects, and then iterates over the Nodes
of the tree. Each node is converted using the built-in equivalent() function,
which automatically selects the correct transformation rule for each node type.

122

MaintenancePolicy

CustomModule

Module
– maxEffectsInProgress : EInt
– effectDiscipline : EffectDiscipline
– name : EString

[0..*] modules

CombiningCondition
– operator:Operator

Condition EffectDiscipline
random
in_order
nondeterministic

[1..1] condition
[1..*] children

Operator
and
or

DelayCondition
– isPeriodic : EBoolean

ActivationCondition

NodeCondition
– orGreater : EBoolean
– node : Node

Delay EffectTriggerEffect

[1..*] effects

[1..1] target[1..1] delay

RepairEffectBoundedDelay
– minTime : EDouble
– maxTime : EDouble

ExponentialDelay
– meanTime : EDouble

[0..1] delay

NodeState LinearNodeState
– fraction : EDouble
– relative : EBoolean

PhaseTypeState
– stateNumber : EInt

[1..1] newState

[1..1] state

Figure 5.12: Metamodel of the FMT maintenance model.

123

Source metamodel

Source model

Transformation
definition Target metamodel

Target modelTransformation
engine

conforms to

input output

conforms to

maps tomaps from

executes

Figure 5.13: The concept of a model transformation.

The converted nodes are then added to the output model. At the bottom of the
code is the start of the definition of the rule converting AND-gates.

Conclusion. Using the MDE approach, we have developed the ATTop tool
translating a fault maintenance tree to an UPPAAL model for analysis 1. Thanks
to the reusability of metamodels, we were able to adapt an existing metamodel for
attack-fault trees and extend it to cover maintenance. By keeping the maintenance
aspects separate, we can reuse large parts of the existing transformations from
various tools to the fault tree metamodel, allowing the user to add maintenance
to an existing fault tree without changing the existing FT. We also reuse large
parts of the transformation to UPPAAL, adding support for maintenance where
applicable.

Our newly developed maintenance metamodel is extensible, just like the original
metamodel for fault trees, allowing easy adaptation to other types of maintenance
modules that may be developed.

5.6 Conclusion
In this chapter we have presented fault maintenance trees (FMTs). FMTs extend
traditional fault trees by including advanced maintenance concepts, including
gradual degradation and wear of components, dependencies of degradation rates
on the failures of other components, and periodic inspections and repair to reverse
degradation and failures.

Quantitative analysis of FMTs is performed by statistical model checking, a
state-of-the art Monte Carlo simulation technique. FMTs are translated into
networks of priced stochastic timed automata and analysed using the Uppaal-SMC
tool to obtain various metrics such as system reliability, expected number of failures,
and expected cost.

1ATTop, including the metamodels and model transformations described here, can be found
at https://github.com/utwente-fmt/attop/tree/maintenance

124

https://github.com/utwente-fmt/attop/tree/maintenance

rule Base transform t : AFT!Tree to out : Uppaal!NTA {
out.systemDeclarations = new Uppaal!SystemDeclarations();
out.systemDeclarations.system = new Uppaal!System();
var iList = new Uppaal!InstantiationList();
out.systemDeclarations.system.instantiationList.add(iList);
for (node : AFT!Node in t.Nodes) {

var converted = node.equivalent();
if (converted <> null) {

out.template.add(converted.get(0));
out.systemDeclarations.declaration.add(converted.get(1));
iList.template.add(converted.get(1).declaredTemplate);

}
}
out.addTopLevel(t.Root);

}
rule andGate transform node : AFT!Node to ret : List {

guard : node.nodeType.isKindOf(AFT!AND)
...

Figure 5.14: Snippet of the translation from the attack-fault tree metamodel
(AFT) to the UPPAAL metamodel.

By applying concepts from model-driven engineering, the analysis tool provides
automated translation from FMTs to Uppaal-SMC. This tool supports fault trees
developed for existing tools, and the use of metamodelling provides extensibility to
more advances maintenance concepts that may yet be developed.

Discussion. The models and analysis presented here can provide important
insights into the dependability of a maintained system, including the reliability
and cost associated with different maintenance policies. This analysis paves the
way for reliability-centered maintenance, allowing practitioners to optimize the
maintenance plan to maximize system reliability and minimize total costs.

FMTs can provide an important stepping stone in the development of models
for predictive maintenance [Mob02]. As FMTs already contain models for the
degradation of components, these can be used to predict the future behaviour of
the system if the current degradation state can be monitored. Slightly modified
maintenance modules can decide when to perform future inspections and repairs
based on such states.

FMTs can already be practically applied in the railway industry, as will be
demonstrated by the two case studies in Part III.

This chapter has presented FMTs with the gates of static fault trees. They

125

could be extended to cover dynamic gates, with two (relatively minor) challenges:

• The failure of dynamic gates depends not only on which children are currently
down, but also on the order in which they have failed. The semantics of
dynamic gates thus need to be extended to cover situations where some or all
children are repaired after failing. Some work has been done in this direction
[MCC+14, GSS15], but there is currently no agreement on the semantics.
Note that there is already disagreement on some details of the semantics
of non-repairable dynamic fault trees [JGKS16], which will likely affect the
development of repairable semantics.

• Dynamic fault trees can, in some formalisms [JGKS16], exhibit nondeter-
minism. The analysis tool used in this chapter (Uppaal-SMC) reduces such
nondeterminism to a probabilistic choice [BDL+12], while some analysis tools
for non-repairable DFTs (e.g., DFTCalc[ABvdB+13]) leave nondeterminism
unresolved and compute upper and lower bounds for the computed metric. To
achieve similar behaviour for repairable DFTs using statistical model checking,
it may be necessary to use different analysis techniques (e.g., [HHH14]).

126

Chapter 6

Analysis via importance
sampling

As described in the previous chapters, (dynamic) fault tree analysis is an industry-
standard technique for reliability analysis. By describing the basic failure modes of
the system, and how those failure modes interact to cause larger failures, various
qualitative and quantitative metrics can be computed. Furthermore, Chapter 5
described fault maintenance trees, extending fault trees to perform quantitative
analysis of systems with complex maintenance and repair policies.

Various quantitative analysis techniques for dynamic fault trees were described
in Section 3.3. While these techniques are useful for many practical systems, they
suffer from the problem of a state space explosion. In order to compute the metric
of interest (e.g., reliability or availability), most techniques construct a model
describing every possible sequence of failures (and repairs, if applicable), possibly
with some minimisation techniques [KS17]. As the number of these sequences
grows exponentially in the number of basic events, such models grow too large
to fit in computer memory for larger practical systems. While various reduction
techniques can be applied to ameliorate this problem [KS17], scalability to large
systems remains an issue.

A standard approach to overcome this problem is to use Monte Carlo (MC)
simulation techniques, which do not need to construct the entire state space. The
memory consumption of such techniques is very low, allowing the analysis of very
large systems. Chapter 5 describes how such a simulation approach is used in the
analysis of fault maintenance trees.

MC simulation solves the problem of memory consumption, at a trade-off for
computation time. This introduces a new potential problem: obtaining accurate
estimates of the dependability of highly reliable system can require large numbers of
simulation runs. The problem, here, is that failures of reliable systems are generally
rare. In the automotive industry, for example, the probability of safety-critical
failures (Automotive Safety Integrity Level D) may be limited to around 10−8

per hour [ISO11, GJK+17b]. For such low probabilities, a very large number of
simulation runs is needed to obtain reasonably tight statistical confidence intervals.

To overcome this difficulty, rare event simulation techniques have been developed

127

since the 1950s [KH51]. Such techniques alter the model being simulated or the
simulator to make simulation runs more likely to reach states of interest. Afterwards,
the altered runs are used to estimate the probability of interest in the original
model. In this way, statistically justified results can be obtained with far fewer
simulations than would otherwise be required.

The most rare event simulation technique most applicable to DFTs, importance
sampling, crucially relies on finding a good change of measure (CoM) to reduce the
variance of the estimated probability. A CoM can reduce the number of simulations
required for good estimate by several orders of magnitude. Conversely, a poor CoM
can actually increase the number of simulations required, or even lead to biased
results.

This chapter presents a novel approach to analyse DFTs with maintenance
through rare event simulation. We adapt the recently-developed Path-ZVA algo-
rithm [RdBSJ18, Rei13] to the setting of repairable DFTs. The algorithm provides
an automated framework for importance sampling of Markovian systems with a
provably good CoM, allowing the estimation of the probabilities of rare events with
minimal user intervention.

To obtain a Markovian model of a DFT, we reuse the compositional seman-
tics introduced in [BCS10], providing behaviour compatible with existing tools
[ABvdB+13]. Repairs for basic events follow the inspection and repair policies
developed for FMTs (as described in Chapter 5). As the Path-ZVA algorithm relies
on the Markovian nature of the system being modelled, we treat only the fully
stochastic subset of DFTs (i.e., where children of PAND and SPARE gates are
fully independent subtrees).

We show that this approach, as implemented in our tool FTRES, is able
to analyse systems too large for existing Markov-chain-based techniques, while
obtaining confidence intervals much tighter than those obtained by traditional MC
simulation. Three case studies, one from the railway industry and two from the
DFT literature, show that this technique can be fruitfully applied in practice.

Approach. Our overall approach to rare event simulation for FMTs relies on
an on-the-fly conversion of the FMT into an input/output interactive Markov
chain (I/O-IMC). This I/O-IMC is a Markovian model describing the behaviour of
the FMT. Given the I/O-IMC, we apply the Path-ZVA algorithm for importance
sampling to alter its transition rates to make the top level event of the FMT
more probable. We then sample simulation traces from this model, measuring the
unavailability of the FMT, and apply a correction for the adjusted transition rates.

More concretely, we take the following steps:

1. Use the DFTCalc tool to compute I/O-IMCs for all elements of the FMT.
Traditionally, one would compute the composition of these elements to obtain
one I/O-IMC describing the behaviour of the FMT. Our approach computes

128

the necessary states of the composition on-the-fly in the following steps.

2. Perform a breadth-first search of the Markovianized composition (explained
in Sections 6.2.2 and 6.2.3) of these elements to identify the most likely paths
that reach a failed state.

3. Apply the Path-ZVA algorithm (explained in Section 6.1) to adjust the
transition probabilities along these most likely paths, and keep track of how
the probabilities were altered.

4. Sample traces of the adjusted model, storing the how much time of each
trace was spend in unavailable (i.e., failed) states, and how much the total
probability of each trace was altered by step 3.

5. Average the unavailabilities of the traces, correcting for the altered probability
of each trace.

Origin of this chapter The analysis method discussed in this chapter was first
presented in:

• Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mariëlle
Stoelinga. “Rare event simulation for dynamic fault trees”. In Proceedings of
the International Conference on Computer Safety, Reliability, and Security
(SAFECOMP), volume 10488 of Lecture Notes on Computer Science, pages
20–35. Springer, September 2017. doi: 10.1007/978-3-319-66266-4_2,
isbn: 978-3-319-66265-7.

Organisation of the chapter We begin the chapter with an introduction to
rare event simulation in Section 6.1, and describe the repairable DFTs that can
be analysed using our approach in Section 6.2. Section 6.3 explains how we
combine these elements to analyse repairable DFTs using importance sampling.
Section 6.4 describes our case studies and their results. Finally, Section 6.5 gives
our conclusions.

6.1 Rare Event Simulation
Monte Carlo simulation is a commonly applied technique to estimate quantitative
metrics in cases where exact solutions are impractical to compute, or where no
methods are known to compute them [Fis96]. A common disadvantage of such
techniques is that many events of practical interest occur only very rarely. In such
cases, accurately estimating the probability of the event is difficult: unless a very
large number of simulation runs are performed, the event may not be observed in

129

https://doi.org/10.1007/978-3-319-66266-4_2

0 1 2 3
𝜆 = 1 𝜆 = 1 𝜆 = 1

(a) System being simulated

Time

St
at
e

1.50
0

1

2

3

(b) Without importance splitting (only
three sample runs shown)

Time

St
at
e

1.50
0

1

2

3

(c) With importance splitting

Figure 6.1: Example of importance splitting.

any of the runs, or otherwise may not be seen frequently enough to draw statistically
sound conclusions.

Reliability engineering is precisely a field where such rare events are of primary
interest: A highly reliable system, by definition, only fails rarely. For example,
the European Rail Traffic Management System specifies that the probability of a
transmitted message being corrupted must be less than 6.8 ⋅ 10−9 [Gro98]. Proving
that a model meets this level of reliability with 95% confidence requires at least
4.4 ⋅ 108 simulations (in the ideal case where no failure is observed within those
runs).

To allow simulation-based estimation of such low probabilities, rare-event
simulation techniques have been developed. These techniques make the event of
interest occur more frequently, either by modifying the system being studied or the
way simulation runs are sampled, and afterwards compensate for the artificially
increased probability.

The main approaches to rare event simulation can be divided into two categories:
importance splitting and importance sampling. Both of these were developed in
the early days of computing [KH51].

Importance splitting. Splitting modifies the simulation engine to select those
sample runs that are likely to reach the event of interest. In particular, the engine

130

begins by simulating runs as usual, and tracks how ‘close’ each run gets to the
interesting event. This ‘closeness’ is measured by the importance of the current
simulation state at any given time. A good measure of importance is one where
the more important a state is, the more likely it is to observe the interesting event
after visiting the state.

To drive the simulation runs to the rare event, additional simulation runs
are started from certain reached states of high importance, with the expectation
that these new runs will reach yet more important states. Eventually, some of
the simulation runs reach the event of interest. Afterwards, by combining the
probabilities of reaching different levels of importance from lower levels, one can
obtain the probability of reaching the rare event from the initial (least important)
state.

Example 25 Consider the system shown in Figure 6.1a, and the property of
interest ‘Probability of reaching state 3 within 1.5 time units’. The actual
probability of this event is approximately 0.19.

Figure 6.1b shows the first three sample runs out of 12, each run starting at
time and state 0 and running until either reaching state 3 or time 1.5. Out of
the full 12 runs, only one reached state 3, giving a point estimate of 0.083, and a
95% confidence interval of the probability as [0.002, 0.384]. Clearly, this is not
very useful.

Figure 6.1c shows an example of the results of an importance splitting technique:
We first draw four runs, stopping each run when it reaches time 1.5 or state 1 (the
blue lines). Two of the runs reached state 1. Next, we start four new simulations,
starting from state 1 and the times when the earlier simulations reached state 1.
We now stop the simulations when they reach state 2 (or time 1.5). This time,
one run reached state 2. Again, we start four independent simulations from state
2 with the starting time the earlier run reached it. We notice that three of these
samples reached state 3 before the time limit.

We can now estimate the total probability as

ℙ(reach state 3) =ℙ(reach state 1) (1)
×ℙ(reach state 2 from state 1) (2)
×ℙ(reach state 3 from state 2) (3)

In this manner, we obtain a point estimate of 2
4 × 1

4 × 3
4 = 0.09375. Due to the

tiny sample size of 𝑁 = 4 to keep this example short, standard approximations
for the confidence interval cannot be applied. For larger sample sizes, accurate
confidence intervals can be obtained.

Many different techniques for importance splitting exist with different procedures
for determining importances, and deciding how many additional simulation runs
to start at which states. For an overview, we refer the reader to [LLLT09].

131

Importance splitting is most useful for systems where the rare event is reached
after a large number of transitions, each with a moderately low probability. Such
systems provide many opportunities for restarting the simulation runs, getting
incrementally closer to the target state. In the context of DFTs, however, the
target (system failure) is usually reached after only a few transition of very low
probability, namely the failures of a few highly reliable components.

Importance sampling. For the aforementioned reason, our approach does not
use importance splitting, but rather importance sampling. A survey of this
technique can be found in [Hei95]. The intuition behind importance sampling
is that the event of interest is made more probable by altering the probability
distributions of the system being simulated. When drawing a simulation run, the
simulator also records the likelihood ratio of the sampled values, defined as the
probability of the current run in the original system divided by its probability in
the modified system.

In MC simulation without importance sampling, 𝑁 simulation runs are per-
formed, and the 𝑖’th simulation run is recorded as an outcome 𝐼𝑖 which is 1 if the
event of interest was reached, and 0 otherwise. The probability of reaching the
event is then estimated as:

̂𝛾orig = 1
𝑁

𝑁
∑
𝑖=1

𝐼𝑖

In importance sampling, the simulator also tracks the likelihood ratio 𝐿𝑖 of the
run, defined as the probability of drawing that run in the original system divided
by the probability of the run in the modified system.

Details of the computation of 𝐿𝑖 depend on the system being simulated. For
example, we consider the system in Figure 6.3. Suppose we observe the path
𝐼 → 𝐵. Now, in the original system, we have ℙorig(𝐼 → 𝐵) = 0.01, while in the
modified system we have ℙIS (𝐼 → 𝐵) = 0.1. We thus have the likelihood ratio
𝐿𝐼→𝐵 = 0.01

0.1 = 0.1. In the general case, if the 𝑖’th simulation run observes trace 𝜋,
we have 𝐿𝑖 =

ℙorig(𝜋)
ℙIS (𝜋) .

Example 26 Figure 6.2 shows how a likelihood ratio can be obtained by con-
sidering fragments of a path in isolation. Our total path consists of some path
segment 𝜋pre with likelihood ratio 𝐿prefix , ending in state 𝑠𝑖, and taking the blue
transition to a path segment 𝑠𝑗𝜋suf with likelihood ratio 𝐿suffix .

We can write the probability of the entire path 𝜋 as ℙ(𝜋 = 𝜋pre𝑠𝑖𝑠𝑗𝜋suf)

132

𝜋pre
𝐿prefix

𝑠𝑖

𝑠𝑗𝜋suf
𝐿suffix

𝑝orig =
1%, 𝑝IS

= 10%

𝑝orig = 99%, 𝑝IS = 90%

Figure 6.2: Example of computing a likelihood ratio in a small part of
a trace. The total likelihood ratio when taking the blue transition is 𝐿 =
𝐿prefix × 1

10 × 𝐿suffix .

Decomposing this into segments, we obtain (conditioning on prefixes of paths):

ℙ(𝜋) =ℙ(𝜋pre𝑠𝑖𝑠𝑗𝜋suf)
ℙ(𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗) × ℙ(𝜋pre𝑠𝑖𝑠𝑗)
ℙ(𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗) × ℙ(𝜋pre𝑠𝑖𝑠𝑗 | 𝜋pre𝑠𝑖) × ℙ(𝜋pre𝑠𝑖)

We can now compute the total likelihood ratio:

𝐿total =
ℙorig(𝜋)
ℙIS (𝜋)

=
ℙorig(𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)ℙorig(𝜋pre𝑠𝑖𝑠𝑗 | 𝜋pre𝑠𝑖)ℙorig(𝜋pre𝑠𝑖)
ℙIS (𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)ℙIS (𝜋pre𝑠𝑖𝑠𝑗 | 𝜋pre𝑠𝑖)ℙIS (𝜋pre𝑠𝑖)

=
ℙorig(𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)ℙorig(𝜋pre𝑠𝑖𝑠𝑗 | 𝜋pre𝑠𝑖)
ℙIS (𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)ℙIS (𝜋pre𝑠𝑖𝑠𝑗 | 𝜋pre𝑠𝑖)

𝐿prefix

=
ℙorig(𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)
ℙIS (𝜋pre𝑠𝑖𝑠𝑗𝜋suf | 𝜋pre𝑠𝑖𝑠𝑗)

1
10

𝐿prefix

= 𝐿suffix
1
10

𝐿prefix

Thus, we can conclude that the likelihood ratio of a path is the product of
the likelihood ratios of the individual transitions along that path. This allows us
to easily determine the likelihood ratio of a given sample run, by tracking the
product of the likelihood ratios of all transitions up to the current point.

Having obtained the likelihood ratios 𝐿𝑖, the estimator of the probability of
interest is then:

̂𝛾IS = 1
𝑁

𝑁
∑
𝑖=1

𝐼𝑖𝐿𝑖.

133

In this way, if the rare event is reached on a run that was originally much
less likely (very low 𝐿𝑖), it counts very little towards the probability estimate.
In contrast, if the rare event is reached on a run with an unchanged probability
(𝐿𝑖 = 1), its contribution to the estimate is also unchanged compared to normal
MC simulation.

Example 27 Figure 6.3a shows a discrete-time Markov chain which, from initial
state I, has a 1% probability of reaching a bad state B, and a 99% probability of
reaching the good state G. If one were to estimate the probability of reaching 𝐵 by
standard MC simulation with 100 runs, there is a 36% probability of not observing
G at all. In the most likely case (1 observed instance), the 95% confidence interval
for the probability is [0.0002, 0.0545], which is very wide.

If one makes the rare event 10 times as likely, as shown in Figure 6.3b, the
same 100 simulations will observe far more runs reaching G. In the most likely
case of observing 10 runs reaching G, a 95% confidence interval of the probability
in the modified system is [0.049, 0.176]. Compensating for the increased likelihood,
one obtains a 95% confidence in the original system of [0.0049, 0.0176], over four
times as precise as the original estimate.

6.1.1 Change of Measure
While the general idea behind importance sampling is simple, making the interesting
but rare event less rare (i.e., increasing its probability measure) and multiplying
the observed probability by how much less rare it is, actually finding a good way
of making this event more likely can be more involved. This process is called the
change of measure (CoM).

In general, one wants to make transitions (in our setting, component failures)

I

B

G

1%

99%

(a) Original system

I

B

G

10%
×

1
10

90% × 99
90

(b) Modified system

Figure 6.3: Example of a change of measure for importance sampling.
The event of interest is reaching state G. In the original system this event has a
probability of 1%, a possible modification for importance sampling increases this
probability to 10%, giving a likelihood ratio of 1%

10% = 1
10 .

134

0.9 0.9 0.9

0.1 0.1 0.1

(a) Original system:
Variance ≈ 0.198

1 1 1

0 0 0

𝐿 = 9
10 𝐿 = 9

10 𝐿 = 9
10

(b) Zero-variance estima-
tor: Variance = 0

0.5 0.5 0.5

0.5 0.5 0.5

𝐿 = 9
5 𝐿 = 9

5 𝐿 = 9
5

(c) Worse estimator:
Variance ≈ 3.72

Figure 6.4: Examples of different changes of measure and their effects
variance of the estimator of the probability to reach the red state.

that bring the system closer to the goal (e.g., system failure) more likely, while
transitions leading away from the goal (e.g., component repairs) less likely. However,
choosing these transitions poorly can produce estimators with higher variance than
standard MC simulation. For example, one could make the most reliable components
more likely to fail. This could lead the simulator to find many runs in which these
components fail, but such runs have low contributions (i.e., low likelihood ratios).
The runs in which less reliable components fail, which are normally more probable,
become even less likely, and thus poorly estimated. Particularly bad choices of
CoM can even produce estimators that are biased or have infinite variance.

The ‘holy grail’ of importance sampling is the zero-variance estimator (ZVE)
[KH51]. That is a system modified in such a way that the event of interest is
always reached, and the likelihood ratio is in fact the probability of reaching the
event in the original system 𝑃𝑜. When such an estimator is used, each simulation
contributes 1

𝑁𝐼𝑖𝐿𝑖 = 1
𝑁1𝑃𝑜, and thus the estimated probability is a constant

regardless of the number of simulations. Unfortunately, obtaining this zero-variance
estimator requires knowledge of 𝑃𝑜 which is the value being estimated to begin
with. Therefore, any practical technique will, at best, approximate the ZVE [LT11].

Example 28 Figure 6.4a shows a discrete-time Markov chain, in which we
estimate the probability of reaching the red state. The actual probability is clearly
0.93 = 0.729.

Figure 6.4b shows a zero-variance estimator of this probability. Every sample
run will reach the red state, and thus yield outcome 𝐼𝑖 = 1. Every sample run
also has the same likelihood ratio, namely 0.93 = 0.729. Thus, each simulation
estimates the probability to be the true probability of 0.729. In this example, the
ZVE is easy to construct, as there is only one path reaching the red state, so we
simply force this to always be the path sampled.

Figure 6.4c illustrates the downside of a poorly chosen change of measure: if
we don’t use our knowledge of the path to the target state, and simply make each
transition equally likely, we end up reducing the likelihood of reaching the target.

135

We thus obtain a greater variance than in the original system.

6.1.2 The Path-ZVA Algorithm
Many different methods have been proposed to find a good change of measure. In
our approach, we apply the Path-ZVA algorithm [RdBSJ18, Rei13]. This is an
algorithm with provably good performance on a large class of Markovian models,
making it particularly suited for simulation of DFTs. The algorithm also does
not require the exploration of the entire state space, but only of those states on
dominant paths (i.e., paths with the fewest low-probability transitions) to the
target state(s).

Path-ZVA produces a CoM suitable for estimating the probabilities of events
of the form “reaching set of states A (goal states), starting from state B (initial
state), and before reaching a state in set C (taboo states)”, where the system must
frequently visit some states in C. In our setting, the goal states are those states
in which the system has failed, while the initial state is the state in which the
system is in perfect condition. The initial state is also the only taboo state. This
means that we estimate the probability “System failure occurs before the system is
repaired to a perfect state, starting from a perfect-condition system”.

The CoM can also be used to estimate the fraction of time the system spends
in the goal states, allowing us to compute the unavailability (average fraction of
time that the system is down). Both for the time spent in A and the probability of
reaching A, a point estimate and a confidence interval are returned.

Given these properties, Path-ZVA is very suitable for estimating the unavail-
ability of a multi-component system, as is typically the case in DFTs, as long as

𝑠3 𝑠0 𝑠1 𝑠2

𝜆 = 1 = 𝜖0

𝜆 = 1 = 𝜖0 𝜆 = 0.01 = 𝜖2

𝜆 = 1 = 𝜖0 𝜆 = 1 = 𝜖0

𝜆 = 0.02 = 2𝜖2

𝜆 = 0.001 = 𝜖3

𝑑0 = 4 𝑑1 = 2 𝑑2 = 0𝑑3 = 4

Figure 6.5: Illustration of the Path-ZVA model. We are interested in
the probability of reaching the red state (the goal state), starting from the green
state (the initial state), before returning to the green state (also the taboo state).
We parameterize all transition rates with a rarity parameter 𝜖 = 0.1. Distances
computed by Path-ZVA importance sampling are written in blue.

136

the system is fully repairable (so the taboo/initial state C is frequently reached),
and all failure and repair times can be described using a Markovian model.

The intuition of the Path-ZVA algorithm is that it first finds, for each state,
the minimal distance from that state to the target. This distance is approximately
the number of rare transitions that need to be taken before the target is reached.
The algorithm then adjusts the transition rates according to the destination states’
distances, so that states closer to the target become more like, and states further
away from the target become less likely.

This model relies on the transition rates being specified using a rarity parameter
𝜖. Each possible path to the event of interest consists of a number of transitions of
the Markov chain, each of which has a rate of the form 𝑟 ⋅ 𝜖𝑘. The dominant paths
are those paths in which the sum of the powers 𝑘 of 𝜖 are smallest. In the limit of
𝜖 → 0, these paths dominate the total probability of reaching the target.

Example 29 Figure 6.5 shows an example of how the distances are computed
by Path-ZVA. The target is state 𝑠2, which thus has a distance 𝑑2 = 0. State
𝑠1 can reach the target in one transition with rate 2𝜖2, i.e., rarity 2, and thus
has distance 𝑑1 = 2. The most likely path from 𝑠0 to the target is via 𝑠1, and
both transition in the path 𝑠0𝑠1𝑠2 have rarity 2, so the distance is 𝑑0 = 2+ 2 = 4.
Finally, The most probable path from 𝑠3 is the path 𝑠3𝑠0𝑠1𝑠2, giving distance
𝑑3 = 0+ 2+ 2 = 4. Note that the path 𝑠3𝑠1𝑠2 is shorter in number of transitions,
but has a higher total rarity (5), and is therefore not the most likely path in the
limit of 𝜖 ↓ 0.

Note that existing work assumes that this parameterization is given, and we
are unaware of any systematic approach to converting models with known rates to
𝜖-parameterized versions. In this chapter, we fix a value of 𝜖 < 1 (typically 𝜖 = 0.1),
and compute 𝑘 and 𝑟 for each transition such that 1 < 𝑟 < 1

𝜖 .
Once the dominant paths have been found, the states on these paths have their

outgoing transition probabilities weighted by the rarity their destination states.
For example, if a state 𝑠𝑖 has two transitions with probability 1

2 to destinations
with distances 𝑑𝑘 = 2 and 𝑑𝑙 = 3, we compute the transition weights 𝑤𝑖𝑘 = 1

2𝜖
2

and 𝑤𝑖𝑑 = 1
2𝜖

3. We then normalize these weights to obtain probabilities, giving
𝑝IS

𝑖𝑘 = 𝜖2

𝜖2+𝜖3 and 𝑝IS
𝑖𝑙 = 𝜖3

𝜖2+𝜖3 (for 𝜖 = 0.1, this means 𝑝IS
𝑖𝑘 ≈ 0.9 and 𝑝IS

𝑖𝑙 ≈ 0.1). For
the continuous-time setting, these new probabilities are multiplied by the original
exit rate of the state, so that the total exit rate is unchanged by the Path-ZVA
algorithm.

As an optimization, once we know the distance 𝑑0 from the initial state to
the target, we know that all states further than 𝑑0 from the target or the initial
state will never be on a dominant path. We can leave the transition rates from
these states unchanged as they will have only a very small contribution to the
total probability (a vanishing contribution in the limit of 𝜖 ↓ 0). This means that

137

the distance-finding algorithm only needs to explore a subset of the state space
(typically several orders of magnitude smaller than the full state space) containing
the potentially dominant paths. More details can be found in [RdBSJ18].

Thus, Path-ZVA takes a Markov chain with initial state 𝑠0 and target state 𝑠𝑇,
with the transition probability from state 𝑠𝑖 to state 𝑠𝑗 given by 𝑝𝑖𝑗𝜖𝑘𝑖𝑗 . We now
perform the following procedure:

1. Perform a breadth-first search, starting in 𝑠0, to find a path 𝑠𝑡0
𝑠𝑡1

⋯𝑠𝑡𝑛−1
𝑠𝑡𝑛

with 𝑡0 = 0 and 𝑡𝑛 = 𝑇, ∀𝑖 ∶ 𝑝𝑡𝑖𝑡𝑗
> 0, and with minimal distance 𝑑0 =

∑𝑛−1
𝑖=0 = 𝑘𝑡𝑖,𝑡𝑖+1

.

2. Decorate every state 𝑠𝑖 with its distance to the initial state 𝑑𝐼
𝑖 .

3. Store the states Λ = {𝑠𝑖|𝑑𝐼
𝑖 ≤ 𝑑0}.

4. Store the states Γ = {𝑠𝑗 ∉ Λ|∃𝑠𝑖 ∈ Λ ∶ 𝑝𝑖𝑗 > 0} that can be reached in one
transition from Λ.

5. Using a backward search from 𝑠𝑇, decorate every state 𝑠𝑖 ∈ Λ ∪ Γ with its
minimal distance to the target 𝑑𝑖.

6. For every state 𝑠𝑖 ∈ Λ, compute the new outgoing transition probabilities:

(a) For every state 𝑠𝑗, compute 𝑤𝑖𝑗 = 𝑝𝑖𝑗𝜖𝑘𝑖𝑗𝜖𝑑𝑗 .

(b) Normalize the new transition probabilities, such that for every state 𝑠𝑗
we let 𝑝′

𝑖𝑗 = 𝑤𝑖𝑗/∑𝑘 𝑤𝑖𝑘.

(c) Compute the likelihood ratio of the transition 𝐿𝑖𝑗 = 𝑝𝑖𝑗𝜖𝑘𝑖𝑗

𝑝′
𝑖𝑗

.

7. For every state 𝑠𝑖 ∉ Λ, leave the transition probabilities unchanged (i.e.,
∀𝑗𝑝′

𝑖𝑗 = 𝑝𝑖𝑗𝜖𝑘
𝑖𝑗), giving likelihood ratio 𝐿𝑖𝑗 = 1.

Under mild conditions, it can be proven that the method leads to estimators
having the desirable property of Bounded Relative Error [Rei13]. This means that
as the event of interest gets rarer due to rates in the model being chosen smaller,
the estimator’s confidence interval width shrinks proportionally to the probability
of interest, making its relative error bounded (cf. [LBTG10]). That is, if we have
a model parameterized by a rarity factor 𝜖, we denote by 𝛾(𝜖) the probability
of interest of the model, and by 𝜎IS (𝜖) the standard deviation of the estimated
probability obtained using importance sampling (using Path-ZVA), then we have
that lim𝜖↓0

𝜎IS (𝜖)
𝛾(𝜖) < ∞. This is not the case for standard MC simulation without

rare event simulation.

138

6.2 Fault Maintenance Trees
As explained in Chapter 2, fault tree analysis (FTA) is a widely-used technique
for dependability analysis, and one of the industry standards for estimating the
reliability of safety-critical systems [ISO11]. By decomposing the possible failures
of the system into different kinds of (partial) failures and further into elementary
failure causes, the failure probabilities of the system as a whole can be computed.
Such quantitative analysis can compute measures such as the system reliability
and availability.

Standard, also called static, fault trees combine different failure modes using
boolean connectors, namely the AND-, OR-, and VOT(𝑘)-gates, failing when all,
any, or at least 𝑘 of their children fail, respectively. The elementary failure causes
(called basic events) are usually given as either probabilities describing the odds of
failing within a fixed time window, or with exponential failure rates describing the
probability of failure before any given time. For repairable systems, repair times in
standard fault trees are usually also specified by exponential rates.

Figure 6.6 shows an example of such a fault tree. It models a case study from
[GSS15], studying part of the interlocking system of a railway corridor. The system
consists of relay and high-voltage cabinets, redundantly implemented such that a
single cabinet of either type can fail without causing a system failure. In the figure,
the event of interest (multiple cabinets failing) is described by the OR-gate at the
top. Its children are two VOT(2)-gates and an AND-gate. The leaves of the tree

2 or more cabinets failing

2 cabinets fail with different causes 2 high voltage cabinets fail

2/𝑛

2 relay cabinets fail

2/𝑛

…Relay
cabinet 1

Relay
cabinet 𝑛

…HV
cabinet 1

HV
cabinet 𝑛

Relay cabinet
fails

HV cabinet
fails

…Relay
cabinet 1

Relay
cabinet 𝑛

…HV
cabinet 1

HV
cabinet 𝑛

Figure 6.6: Example fault tree of the relay cabinet case study. Due to
redundancy, the system can survive the failure of any single cabinet, however two
failures cause system unavailability. The number of cabinets varies, and is indicated
by 𝑛.

139

pristine lightly
degraded

moderately
degraded

extremely
degraded

failed

𝜆1 𝜆2 𝜆3 𝜆4

Figure 6.7: Basic event with multiple degradation phases.

are the BEs describing the failures of individual relay and high voltage cabinets.

6.2.1 Dynamic and Repairable Fault Trees
Chapter 3 explains dynamic fault trees (DFTs) [DBB90], which extend fault trees
with additional gates to model common patterns in designs of highly reliable
systems. In particular, DFTs add gates for modelling spare component with dif-
ferent failure rates when they are not being used, functional dependencies where
the failures of a component or subsystem is the cause of other components failing
(e.g., a failed power supply leading to inoperative pumps), and the priority-AND
gate used when the ordering in which failures occur is relevant.

Chapter 5 describes how fault trees are further extended to fault maintenance
trees (FMTs) with support for advanced maintenance and repair policies. Such
maintenance is usually required to prevent failures when possible, and the repairs
correct what failures still occur. Since this maintenance is essential for ensuring
the dependability of the system, it is important to take the maintenance policy
into account when performing reliability analysis. Similar maintenance policies
have been developed for DFTs in [GKS+14].

A key component of the implementation of maintenance in (D)FTs is the
non-exponential basic event. The traditionally used exponential distribution is
memoryless (i.e., the remaining time to failure is independent of how long the
component has already been in operation), which does not accurately describe
the behaviour of components subject to gradual wear. To support wear and
maintenance modelling, BEs in FMTs can progress through multiple phases of
degradation, as depicted in Figure 6.7. Inspections can periodically check whether
some BEs have degraded beyond some threshold phase, and repairs can return
them to their undegraded phase if they have. periodic replacements simply return
their BEs to their undegraded phase periodically.

6.2.2 Compositional Semantics
The analysis used in this chapter follows the compositional semantics in terms
of input/output interactive Markov chains given in [BCS10], with subsequent
extensions for maintainable systems [GKS+14]. This compositional approach

140

𝑠0 𝑠1 𝑠2 𝑠3

𝑠5 𝑠6 𝑠7 𝑠8 𝑠9

𝜆𝑖 𝜆𝑖 𝜆𝑖

𝜆𝑖

𝜆𝑖 𝜆𝑖 𝜆𝑖 𝜆𝑖

threshold? threshold? threshold? threshold?

start_rep!

Figure 6.8: Inspection module with Erlang-distributed time between
inspections. If no threshold signal is received, the model loops in the top row of
states. When a threshold signal is received, the model moves to the bottom row,
waits until the time an inspection is performed, signals that a repair is needed, and
moves back to the initial state.

converts each element of the DFT (i.e., gate and basic event) to an I/O-IMC,
and composes these models to obtain one large I/O-IMC for the entire DFT.
Intermediate minimisation helps to keep the size of the state-space to a minimum,
allowing the analysis of larger models.

The I/O-IMCs for the gates are the same as those introduced in Chapter 5 (e.g.,
Figure 5.4 on page 108 for the AND-gate). The I/O-IMCs for the inspection and
repair modules also follow those in Chapter 5, except that the exact inspection and
repair time are approximated using an Erlang distribution by a chain of exponential
distributions. For example, Figure 6.8 shows a Erlang-approximated inspection
module.

Input/Output Interactive Markov Chains.

I/O-IMCs are a modelling formalism combining continuous-time Markov chains
with discrete actions (also called signals). They have the useful property of being
composable, as the signals allow several I/O-IMCs to communicate [BCS10].

An example of this composition is shown in Figure 6.9. The input signals
(denoted by a ‘?’) can only be taken when the corresponding output signal (denoted
by ‘!’) is taken. Internal actions (denoted by ‘;’) and Markovian transitions (denoted
by Greek letters) are taken independently of the other modules. If multiple non-
Markovian transitions can be taken from a state, which transition is taken is
nondeterministically chosen.

In the example, all component models begin in their initial states. From 𝑡0 the
transition ‘b?’ cannot be taken unless the output transition ‘b!’ is also taken, so

141

both initial states can only perform their Markovian transitions. Assuming the
leftmost model takes its transition with rate 𝜆 first, the composition enters state
𝑠1, 𝑡0. From here, two options are possible: (1) the internal action ‘a;’ from 𝑠1 to 𝑠2
can be taken, leaving the rightmost model in state 𝑡0, or (2) the output transition
‘b!’ from 𝑠1 to 𝑠3 can be taken together with the input transition ‘b?’ from 𝑡0 to
𝑡1. In the latter case, the composed model takes a transition ‘b!’ allowing it to
be composed with yet more models, and enters state 𝑠3, 𝑡1, from which neither
component model can take further transitions. If the internal action was taken
instead, the transition from 𝑡0 to 𝑡2 with rate 𝜇 remains possible, leading to the
terminal state 𝑠2, 𝑡2.

6.2.3 Reducing I/O-IMCs to Markov Chains
Step 2 of our approach involves computing the parallel composition of the I/O-IMCs
of the elements of the FMT. Our technique requires that the (composed) I/O-
IMC be reduced to a Markov Chain, which means resolving all nondeterminism.
In our setting, we assume that all nondeterminism is spurious (i.e., how the
nondeterminism is resolved has no effect on the computed availability). Therefore,
if we are in a state where we can choose a non-Markovian transition, we apply
the maximal progress assumption[EHZ10] and take this transition. If multiple
non-Markovian transitions can be taken from the same state, we do not specify
which one is taken (as an implementation matter, we take whichever occurs first
in the specification file). Thus we are only left with states with only Markovian
transitions, which can be used as an input for the Monte Carlo simulation.

Formally, Algorithm 6.1 specifies how we take an IMC (reformulating the
transition relations as transition functions), and compute the outgoing transitions
from a state in the Markovianized CTMC. Note that we require the IMC to have
no interactive cycles (i.e., no Zeno runs), or the algorithm may fail to terminate.

Example 30 Figure 6.10 illustrates the Markovianization process. Upon encoun-
tering the transition 𝑠0

𝜆
−→ 𝑠1, we notice that 𝑠1 has non-Markovian transitions.

We now arbitrarily select either the ‘a;’ or ‘b;’ transition. If we select ‘a;’, we

𝑠0

𝑠2

𝑠1

𝑠3

𝜆

𝑎; 𝑏!

𝑡0

𝑡2

𝑡1

𝜇

𝑏?

||

𝑠0, 𝑡0 𝑠1, 𝑡0

...

𝑠3, 𝑡1

𝑠2, 𝑡0 𝑠2, 𝑡2

𝜆

𝜇 𝑎;

𝑏!

𝜇
=

Figure 6.9: Example of the partial parallel composition of two I/O-IMCs.

142

Algorithm 6.1 Markovian transition function
Context: IMC with set of states 𝑆, set of actions 𝐴, interactive transition function

𝐼 ∶ 𝑆 → 𝒫(𝐴 × 𝑆), Markovian transition function 𝑀 ∶ 𝑆 → 𝒫(ℝ>0 × 𝑆).
Input: State 𝑠 ∈ 𝑆.
Output: Set of Markovian transitions 𝑅 ⊆ ℝ>0 × 𝑆.
𝑅 ← ∅
for (𝑟, 𝑡) ∈ 𝑀(𝑠)

while 𝐼(𝑡) ≠ ∅
take (𝑎, 𝑡′) ∈ 𝐼(𝑡)
𝑡 ← 𝑡′

end while
𝑅 ← 𝑅 ∪ {(𝑟, 𝑡)}

end for
return 𝑅

𝑠0 𝑠1
𝜆

𝛼

𝑠2

𝑠4

a;

b;

𝑠3

𝛾

𝜇

c; 𝜇 𝑠0 𝑠3
𝜆 𝜇

𝑠0 𝑠4
𝜆 𝛾

Figure 6.10: Example of the possible conversions of an I/O-IMC to a
Markovian model following the procedure described in Section 6.2.3.

replace the initial transition by 𝑠0
𝜆
−→ 𝑠2, and note that 𝑠2 again has a non-

Markovian transition. We thus replace the initial transition again by 𝑠0
𝜆
−→ 𝑠3,

resulting in the upper right model. If we initially choose the ‘b;’ transition, we
instead obtain the model on the bottom right.

This process leaves undefined which transition is taken in nondeterministic states.
In most practical DFT models, the only source of nondeterminism is the order in
which gates fail when an element has multiple parents. Such nondeterminism is
spurious, in that it has no effect on the outcome of the analysis. It is therefore
acceptable to leave the exact resolution undefined for such models.

In models where nondeterminism can actually affect the results of the analysis,
our determinisation is clearly not correct. We therefore apply our analysis only
on DFTs in which a syntactic check rules out the possibility of non-spurious
nondeterminism. In particular, we require the children of PAND or SPARE gates

143

to be entirely independent subtrees. We have found that in practice, most DFTs
in the literature already satisfy this condition.

6.3 Methodology
Our overall approach to rare event simulation for FMTs relies on a conversion of
the FMT into an input/output interactive Markov chain (I/O-IMC). This I/O-IMC
is a Markovian model describing the behaviour of the FMT. Given the I/O-IMC,
we apply the Path-ZVA algorithm for importance sampling to alter its transition
rates to make the top level event of the FMT more probable. We then sample
simulation traces from this model, measuring the unavailability of the FMT, and
apply a correction for the adjusted transition rates.

In our approach, we follow the semantics of [BCS10], which describes the
behaviour of dynamic fault trees as I/O-IMCs. These semantics were extended in
[GKS+14] to include periodic maintenance actions. One of the major benefits of
these semantics is that the I/O-IMC is specified as a parallel composition of many
smaller I/O-IMCs, each of which models one element (i.e., gate, basic event, or
maintenance module) of the FMT.

We note that the semantics of the FMT analysed using this approach differs
somewhat from the semantics described in Chapter 5. The FMTs described there
support arbitrary probability distributions for inspection and repair times, which
are not supported in I/O-IMCs. We therefore approximate these distributions
using Markovian models. In particular, we approximate exact times (e.g., ‘inspect
every two weeks’) using an Erlang distribution with the specified time as its mean.

Overall, given an FMT, our analysis technique consists of the following steps:

1. Use the DFTCalc tool to compute I/O-IMCs for all elements of the FMT.

2. Apply the steps Path-ZVA algorithm, as explained in Section 6.1.2, to adjust
the transition probabilities and compute the corresponding likelihood ratios.
Since only the most likely paths receive altered probabilities, the rest of the
model can be computed on-the-fly.

3. Sample traces of the adjusted model, ending each trace when it returns to
the initial state, storing the likelihood ratio 𝐿𝑖, total time 𝐷𝑖, and time spent
in unavailable (i.e., failed) states 𝑍𝑖.

4. Average the total time 𝐷𝐿 and unavailable time 𝑍𝐿 of the traces, multiplied
by the likelihood ratios. Now 𝑍𝐿/𝐷𝐿 is the output estimated unavailability.

Example 31 Figure 6.11 illustrates the steps of our approach on a simple FMT
with two components, and periodic repair.

144

A B

Exp(1
10) Erlang(2, 2

10)

ℛ
Exp(5)

(a) Fault maintenance tree

1
10 fail𝐴!

repair?

2
10

2
10 fail𝐵!

repair?

repair?

fail𝐴?

fail𝐵?

fail!

repair?

5

repair!

(b) I/O-IMCs

𝑠0 𝑠1

𝑠2

𝜖

2𝜖
2𝜖 𝜖

5

5

5

(c) Composed, Markovianised model
(𝜖 = 1

10)

𝑡0 𝑡1

𝑡2

1
8 (5 + 3𝜖)

2
8 (5 + 3𝜖)

2
8 (5 + 3𝜖) 1

8 (5 + 3𝜖)

5
8 (5 + 3𝜖)

5

5
8 (5 + 3𝜖)

(d) Adjusted model

𝑠0 𝑠1

𝑠2

𝜖
5+3𝜖

2𝜖
5+3𝜖

2𝜖
5+3𝜖

𝜖
5+3𝜖

5
5+3𝜖

1

5
5+3𝜖

(e) Embedded DTMC of (c)

𝑡0 𝑡1

𝑡2

1
8

2
8

2
8

1
8

5
8

1

5
8

(f) Embedded DTMC of (d)

Figure 6.11: Example of the steps to apply importance sampling to a DFT.

145

1. We convert every element of the FMT in Figure 6.11a into an I/O-IMC
shown in Figure 6.11b.

2. We compose these I/O-IMCs and remove the non-Markovian transitions,
obtaining the model shown in Figure 6.11c. In this transformation we also
rewrite the transition rates to include the rarity parameter 𝜖. By searching
this model, we identify that we can reach the failed state in one transition.

3. We identify all paths reaching the goal in one transition, which is only the
blue transition in Figure 6.11c.

4. Applying Path-ZVA, we increase the likelihood of the transitions along the
previously identified path, resulting in the model shown in Figure 6.11d.

5. We draw simulation traces from the adjusted model. For example, we can
draw three traces (in practice one would draw many thousands):

(a) 𝑡0𝑡0 (𝐿0 = 8
5+3𝜖 ≈ 1.5) with total time 𝐷0 = 0.045 (sampled from an

exponential distribution with mean 1
5.3) and no time in unavailable

states (𝑍0 = 0).
(b) 𝑡0𝑡2𝑡0 (𝐿1 ≈ 0.23) with total time 𝐷1 = 0.196 + 0.055 = 0.251 and no

unavailable time.
(c) 𝑡0𝑡1𝑡0 (𝐿2 ≈ 0.15) with total time 𝐷2 = 0.436 + 0.196 = 0.632 and

unavailable time 𝑍2 = 0.196.

6. Finally, we combine the samples to obtain our average unavailability. For
the samples drawn above, we would obtain ̂𝑈 = 1

3 (𝐿0
𝑍0
𝐷0

+ 𝐿1
𝑍1
𝐷1

+ 𝐿2
𝑍2
𝐷2

) ≈
1
3 (0 + 0 + 0.15 0.196

0.632) ≈ 0.016. More detailed statistical measures, such as
confidence intervals, can also be computed.

6.4 Case Studies and Results
We evaluate the effectiveness of the importance sampling analysis method described
in this chapter on three parameterized case studies. We compare our FTRES
tool to the DFTCalc tool, which evaluates DFTs numerically through stochastic
model checking [ABvdB+13], and to a standard Monte Carlo simulator (MC) built
into FTRES without importance sampling.

The case studies we use are parameterized versions of one DFT taken from
industry and two well-known benchmarks from the literature. The industrial case
models a redundant system of relays and high-voltage cabinets used in railway
signalling, and was taken from [GSS15]. The other two cases are the fault-tolerant
parallel processor (FTPP) [DBB90] and the hypothetical example computer system
(HECS) [SVD+02].

146

Experimental Setup.

For each of the cases, we compute the long-run unavailability (exact for DFTCalc,
95% confidence interval for FTRES and MC).

The failure times of the basic events are modelled as exponential distributions
in the HECS case (following [SVD+02]), while those for the railway cabinets and
FTPP cases are modelled as an Erlang distribution where the number of phases
𝑃 is a parameter ranging from 1 to 3 phases; clearly, 𝑃 = 1 corresponds to the
exponential distribution.

We measure the time taken (with a time-out of 48 hours) and the memory
consumption in number of states (which is negligible for MC). For DFTCalc we
measure both peak and final memory consumption. Simulations by FTRES (after
the CoM is computed) and MC were performed for 10 minutes.

All experiments were conducted on a dual 2.26 GHz Intel® Xeon® E5520
processor and 24 GB of RAM.

6.4.1 Railway Cabinets
This case, provided by the consulting company Movares in [GSS15], is a model of
a redundant system of relay and high-voltage cabinets used in railway signalling.

The model, shown in Figure 6.6 comprises two types of trackside equipment
used in the signalling system: Relay cabinets house electromechanical relays that
respond to electronic controls signals by switching electrical power to e.g. switch
motors and signals lights. Relays are also a safety-critical part of the interlocking
system, as they are wired in such a configuration as to prevent safety violations
such as moving switches in already-occupied sections of track. The high-voltage
cabinets provide connections from the local power grid to operate the relays and
other electrically-powered systems.

We consider several variants of the FT for given parameter values. We augment
the FT with a periodic inspection restoring any degraded basic events to perfect
conditions. The time between executions of this action is governed by an Erlang
distribution with two phases, and a mean time of half a year. We vary the number
of cabinets in the system from 2 to 4.

Table 6.1 shows the results of the FTRES, DFTCalc, and MC tools. We
note that, whenever DFTCalc is able to compute a numerical result, this result
lies within the confidence interval computed by FTRES. We further see that the
2-phase models with 4 cabinets, and the 3-phase models with 3 or 4 cabinets could
not be computed by DFTCalc within the time-out (times shown in Figure 6.12),
while FTRES still produces usable results. Finally, while the standard Monte
Carlo simulation produces reasonable results for the smaller models, on the larger
models it computes much wider confidence intervals. For the largest models, the
MC simulator observed no failures at all, and thus computed an unavailability of 0.

147

Unavailability
N P DFTCalc FTRES MC

R
ai

lw
ay

ca
bi

ne
ts

2 1 4.25685 ⋅ 10−4 [4.256; 4.258] ⋅ 10−4 [4.239; 4.280] ⋅ 10−4

3 1 7.71576 ⋅ 10−4 [7.713; 7.716] ⋅ 10−4 [7.694; 7.751] ⋅ 10−4

4 1 1.99929 ⋅ 10−3 [1.998; 2.000] ⋅ 10−3 [1.999; 2.004] ⋅ 10−4

2 2 4.55131 ⋅ 10−8 [4.548; 4.555] ⋅ 10−8 [1.632; 4.387] ⋅ 10−8

3 2 6.86125 ⋅ 10−8 [6.846; 6.873] ⋅ 10−8 [0.673; 1.304] ⋅ 10−7

4 2 — [2.358; 2.394] ⋅ 10−7 [2.282; 3.484] ⋅ 10−7

2 3 5.97575 ⋅ 10−12 [5.714; 6.252] ⋅ 10−12 —
3 3 — [5.724; 7.914] ⋅ 10−12 —
4 3 — [0.337; 1.871] ⋅ 10−11 —

F
T

P
P

1 1 2.18303 ⋅ 10−10 [2.182; 2.184] ⋅ 10−10 —
2 1 2.19861 ⋅ 10−10 [2.198; 2.199] ⋅ 10−10 —
3 1 2.21420 ⋅ 10−10 [2.213; 2.215] ⋅ 10−10 —
4 1 2.22979 ⋅ 10−10 [2.229; 2.230] ⋅ 10−10 [0; 2.140] ⋅ 10−8

1 2 1.76174 ⋅ 10−20 [1.761; 1.763] ⋅ 10−20 —
2 2 1.76178 ⋅ 10−20 [1.756; 1.770] ⋅ 10−20 —
3 2 — [1.673; 1.856] ⋅ 10−20 —
4 2 — [1.257; 2.553] ⋅ 10−20 —
N k DFTCalc FTRES MC

H
E

C
S

1 1 4.12485 ⋅ 10−5 [4.118; 4.149] ⋅ 10−5 [2.615; 10.64] ⋅ 10−5

2 1 — [3.010; 3.061] ⋅ 10−9 —
2 2 — [8.230; 8.359] ⋅ 10−5 [0; 1.734] ⋅ 10−4

3 1 — [3.024; 3.213] ⋅ 10−13 —
3 2 — [8.853; 9.106] ⋅ 10−9 —
3 3 — [1.230; 1.261] ⋅ 10−4 [0; 1.267] ⋅ 10−4

4 1 — [1.328; 8.213] ⋅ 10−17 —
4 2 — [1.145; 1.270] ⋅ 10−12 —
4 3 — [1.744; 1.817] ⋅ 10−8 —
4 4 — [1.609; 1.667] ⋅ 10−4 —

Table 6.1: Comparison of the unavailabilities computed by DFTCalc, FTRES,
and MC simulation for the case studies with N cabinets/processor groups.

148

101

102

103

104

T
im

e
(s
)

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc MC DFTCalc gen. FTRES sim. FTRES search

Figure 6.12: Processing times for the different tools: Times for model
generation and model checking for DFTCalc, and for the graph search and
simulation for FTRES. Bars reaching the top of the graph reached the time-out of
48 hours. Most bars for the HECS case study are omitted as they all timed out.
Exact times can be found in Table B.1 on page 248.

Figure 6.15 shows the generated state spaces for both tools. Since FTRES only
needs an explicit representation of the shortest paths to failure, it can operate in
substantially less memory than DFTCalc. Although the final model computed
by DFTCalc is smaller due to its bisimulation minimisation, the intermediate
models are often much larger.

6.4.2 Fault-Tolerant Parallel Processor
The second case study is taken from the DFT literature [DBB90], and describes
a fault-tolerant parallel computer system. This system consists of four groups of
processors, labelled A, B, C, and S. The processors within a group are connected by
a network element, independent for each group. A failure of this network element
disables all connected processors.

The processors are also grouped into workstations, numbered 1 to 𝑛. Each
workstation depends on one processor per group, where the processor of group S
can act as a spare for any of the groups. Therefore, if more than one processor (or
its connecting network element) in a workstation fails, the workstation fails.

Maintenance is performed through a periodic replacement restoring all degraded
components to their perfect conditions. The time of this replacement follows a
four-phase Erlang distribution with a mean time of 2 time units between repairs.

149

Computer system failure

Workstation 1 failure Workstation 𝑛 failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

Figure 6.13: DFT of the fault-tolerant parallel processor. Connections
between the FDEP for B omitted for clarity, as well as the FDEPs for groups C
and S.

The numerical results and computation times for this case study can be found
in Table 6.1 and Figure 6.12 respectively. We can see that the unavailability does
not vary much with the number of computer groups, since the network elements
are the dominant failure causes and are not affected by 𝑁. We again observe that
DFTCalc runs out of time in the two largest cases while FTRES still performs
well. Wider confidence intervals are produced, though still useful for most practical
purposes. The standard MC simulation observed no failures for most of the models.

Figure 6.15 lists the generated state spaces for both tools. Again, FTRES
requires less peak memory than DFTCalc.

6.4.3 Hypothetical Example Computer System
Our final example is the classic benchmark DFT of the Hypothetical Example
Computer System (HECS), described in [SVD+02] as an example of how to model
a system in a DFT. It consists of •a processing unit with three processors, of
which one is a spare, of which only one is required to be functional. It further
contains •five memory units of which three must be functional, •two busses of
which one must be functional, and •hardware and •software components of an
operator interface. The DFT of the HECS is shown in Figure 6.14.

We parameterize this example by replicating the HECS 𝑁 times, and requiring

150

Computer system failure

MemoryProcessor Bus Interface

𝑃1 𝑃2𝑃𝑠

𝑀3 𝑀4𝑀2𝑀1 𝑀5

3/5
𝐵1 𝐵2 HW SW

Figure 6.14: DFT of the hypothetical example computer system.

𝑘 of these replicas to be functional to avoid the top level event. The basic events in
this case remain exponentially distributed, and we add maintenance as a periodic
replacement of all failed components on average every 8 time units (on a 2-phase
Erlang distribution).

As for the other cases, Table 6.1 lists the unavailabilities computed by the tools,
while Figures 6.12 and 6.15 show the processing time and state spaces computed,
respectively. We notice that except for the simplest case, DFTCalc is unable to
compute the availability within 48 hours, and the MC simulator in many cases
failed to observe any failures, and produced very wide confidence intervals in the
cases where it did. FTRES, on the other hand, produced reasonable confidence
intervals for all cases (although the interval for the (4, 1) case is fairly wide, it also
has the largest state space and a very small unavailability).

6.4.4 Analysis results

As the sections above show, FTRES outperforms DFTCalc for larger models, and
traditional MC simulation for models with rare failures. In particular, FTRES:

• requires less peak memory than DFTCalc in every case, and requires less
time for large models, while still achieving high accuracy.

• can analyse models larger than DFTCalc can handle.

151

102
103
104
105
106
107

N
r.

of
st
at
es

st
or
ed

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc peak FTRESDFTCalc final

Figure 6.15: Numbers of states stored in memory for the different cases with
𝑁 cabinets/processor groups. For DFTCalc, both the largest intermediate and
the final (minimised) state spaces are given. Numerical results can be found in
Table B.2 on page 249.

• gives confidence intervals up to an order of magnitude tighter than those
estimated by MC in similar processing time.

6.5 Conclusion
Traditional analysis techniques for (repairable) dynamic fault trees suffer from a
state-space explosion problem hampering their applicability to large systems. A
common solution to this problem, Monte Carlo simulation, suffers from the rare
event problem making it impractical for highly-reliable systems. This chapter has
introduced a novel analysis technique for repairable DFTs based on importance
sampling. We have shown that this technique can be used to obtain tight confidence
intervals on the availability of highly reliable systems with large numbers of
repairable components.

Our method uses the compositional semantics of [BCS10] and [GKS+14], pro-
viding flexibility and extensibility in the semantics of the models. By deploying
the Path-ZVA algorithm [RdBSJ18], we only need to explore a small fraction of
the entire state space, substantially reducing the state-space explosion problem.
At the same time, the algorithm uses importance sampling to significantly reduce
the number of simulations required for accurate estimation.

We have demonstrated using three case studies that our approach can handle
considerably larger models than DFTCalc, and provide more accurate results
than classical Monte Carlo simulations.

152

Future work. Relevant extensions of our approach could generalise the algorithm
to compute metrics other than availability. Of particular interest would be the
reliability. Furthermore, we currently restrict ourselves to purely Markovian
models, which means we can only approximate the semantics described in Chapter
5. Another promising avenue to investigate is how to include non-Markovian
transition times. This would allow fault maintenance trees to be analysed in
their full expressive power. Finally, the DFT semantics of Boudali et al. [BCS10]
produces nondeterministic transitions for many DFTs. Our current conversion to a
Markovian model can only be applied if this nondeterminism is spurious, and it
could be interesting to examine whether non-spurious nondeterminism could be
meaningfully incorporated in our approach.

Tooling. For our analysis, we use the models of the DFT elements produced
by DFTCalc, as well as its description of how to compose them. In this way, we
ensure that our semantics are identical to those used in the existing analysis.

DFTCalc produces IMCs for the DFT elements, and a specification describing
how the IMCs are composed. It then uses the CADP [GLMS13] tool to generate
the composed IMC which can be analysed by a stochastic model checker.

FTRES instead uses the models and composition specification to generate the
composition on the fly, and applies the importance sampling algorithm to compute
the unavailability of the model.

DFT dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

DFTCalc

dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

Reliability

FTRES

CADP .exp

.aut
Importance sampling Availability

Figure 6.16: Diagram of the workflow of FTRES and DFTCalc.

Figure 6.16 shows how the various programs interact to obtain numerical metrics
from a (repairable) DFT.

153

154

Part III

Case studies

155

Chapter 7

FMTs in practice: Analysis
of the electrically insulated
joint

Chapter 5 introduced the formalism of fault maintenance trees (FMTs) and de-
scribed how FMTs can be analysed to obtain important dependability metrics such
as reliability and expected costs.

In this chapter and the next, we investigate whether FMTs can be applied in
the industrial setting of railway systems to improve maintenance policies. This
chapter considers electrically insulated joints (EI-Joints, example shown in Figure
7.1), a railroad component that is both commonly used, and a notable source of
disruptions (causing about 1000 disruptions annually in the Netherlands). The
next chapter will discuss a pneumatic compressor.

Problem Statement. We like to use the EI-joint to find out if FMTs are a
useful tool to investigate maintenance questions, and to obtain trustworthy results.
In particular, we aim the answer the following research questions:

1. Do FMTs provide sufficient expressiveness to model the complex maintenance
policies used in practice?

2. Can we construct an FMT of the EI-joint with sufficient accuracy to make
recommendations about its maintenance policy?

3. Can we find improvements to the reference maintenance policy of the EI-joint
to reduce cost and/or increase the reliability of the joint?

4. How does the newly developed NRG joint compare to the currently installed
EI-joints in terms of reliability and cost?

Case description. EI-Joints are a part of the train detection system, and provide
a physical connection between two sections of rail while keeping them electrically

157

separated. This allows the detection system to determine which of these separated
sections is occupied by a train.

The degradation behaviour and maintenance actions for the EI-joint are typical
for physical assets, with both random and wear-induced failures, repairs and
renewals, and different options for maintenance strategies. Furthermore, both
failures and maintenance actions have significant costs.

In close collaboration with the Dutch national railway network infrastructure
manager ProRail, we have conducted a reliability analysis of EI-joints. We have
developed an FMT of the joint, and translated this FMT into an Uppaal-SMC
model from which we can obtain dependability metrics using statistical model
checking.

We analyse the dependability of the EI-joints, computing their reliability,
expected number of failures, and expected costs over time. In particular, we
investigate a reference maintenance strategy provided by ProRail, as well as
potentially better strategies. We study:

1. Variations in inspection intervals, as more frequent inspections lead to fewer
failures but also higher inspection costs.

2. Periodic preventive replacements, replacing the joint after a given length
of time regardless of its (observable) condition. This increases maintenance
costs due to the replacement and planned downtime, but may reduce failures
if some types of wear are not visible on inspection.

3. Replacement of an entire joint instead of repairing individual components.

Fishplate
End post

(insulating material) Bolt

Sleepers

1

Figure 7.1: An electrically insulated joint with the visible components indicated.

158

This may be useful if several, otherwise separate, failure modes degrade at a
similar rate. As Section 7.1 will describe, many failure modes in the EI-Joint
have similar expected times to failure, and replacing the joint when the first
failure occurs may prevent other failures that would occur shortly afterwards.

4. Repair when observing higher or lower degradation level. ProRail’s policy
specifies acceptable amounts of degradation, and if an inspection finds a
greater amount, a repair is performed. By reducing the permitted amount,
more failures can be prevented at the cost of more replacements. Conversely,
a higher level means fewer replacements but a higher probability of failure
before the next inspection.

Furthermore, we analyse a new type of EI-joint, the NRG joint, to examine
whether replacing the existing joints with this new type will reduce disruptions
and costs.

Our analysis finds that (1) the current inspection policy is nearly cost-optimal
when combining cost of failure and cost of maintenance, (2) periodic preventive
replacements improve reliability, but are more expensive than corrective replace-
ments, (3) the optimal inspection policy does not vary much with the load level of
the track, and (4) the new NRG joint is both more reliable and less expensive in
operation. During the case study, we also found some inaccuracies in ProRail’s
documentation, which were corrected, and noted that this documentation could be
improved by including information about dependencies between different failure
modes.

An important contribution is the extensive validation of our model: To provide
confidence in the results of our analysis, we have compared the results predicted
from our analysis with actual data from a failure database. Our predicted results
agree with actual results from the field strongly enough to make recommendations
based on our model.

During our analysis, we were able to construct an FMT of the EI-joint that
models the reference policy, demonstrating that FMTs are sufficiently expressive
to model practical maintenance policies. We validate the FMT against ProRail’s
database of failures and replacements, finding that our model gives predictions in
line with reality. This gives us confidence that our model can also make accurate
predictions of alternative maintenance policies. These predictions show that the
reference policy is already close to cost-optimal. We find several alternatives that
increase the reliability of the joint, but at the expense of higher total cost.

Origin of this chapter. This chapter describes the case study published in:

• Enno Ruijters, Dennis Guck, Martijn van Noort, and Mariëlle Stoelinga.
“Reliability-centered maintenance of the electrically insulated railway joint
via fault tree analysis: A practical experience report”. In Proceedings of the

159

https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67

46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 662–669, 2016. doi: 10.1109/DSN.2016.67,
isbn: 978-1-4673-8891-7.

Organisation of this chapter. In Section 7.1 we describe the EI-Joint and
its maintenance process. Section 7.2 explains the process used to construct the
model of the EI-Joint. Section 7.3 explains the analysis performed and the results
obtained, and Section 7.4 presents our conclusions.

7.1 Case description
Many railroad networks use electrical detection to determine the presence of trains
on the tracks (e.g., in The Netherlands [Pro15]). This system works by detecting
when the axles of a train electrically connect the two rails, illustrated in Figure 7.2.
To determine the location of a train, tracks are divided into several, electrically
isolated, sections. This separation is provided by electrically insulated joints
(EI-joints, shown in Figure 7.1).

To detect the presence of a train, a small detection voltage is applied across the
rails at one end of a section, and detected at the other end. If a train is present
on the track, its axles will short circuit the detection current, so that the signal is
not detected. The interlocking system then locks switches in their positions, sets
signals appropriately, etc. This system is fail-safe, as loss of the detection current
(e.g., due to a broken track or failure of the signal generator) results in the same
lack of current at the detector as when a train is present, so that signals do not
allow trains to enter the section, switches cannot be moved, etc.

The location of a train is determined by creating electrically separate sections
of track, each of which has its own detection current and detectors. On straight
stretches of rail, these sections are several hundred metres to several kilometres
in length. In areas with switches or level crossings, the sections are often much
shorter.

The sections are connected using EI-joints, which maintain electrical separation
between sections, while mechanically connecting the rails. The joints do not
compromise the fail-safe nature of the detection system: if failed joints allow the
detection current from one section to travel to another section, a train on either
section will short out the current. The result is then that both sections appear
occupied, which means no other trains can enter them, but no dangerous situations
can occur.

Due to the large number of these joints in the railroad network (approx. 50,000
in the Netherlands) and the susceptibility of the joints to environmental conditions,
EI-joints are a relatively frequent cause of disruptions. Failures can occur for

160

various reasons, both internal to the joint such as broken bolts, and external to
the joint such as metal shavings bypassing the insulation.

Visual inspections can be performed to determine whether some of these failures
are likely to occur soon, and corrective action, such as sweeping away iron shavings,
can prevent certain failures from occurring. More detailed inspections, such as
measuring the electrical resistance, can detect more types of failure, but are more
expensive as they require the track to be taken out of service so a worker can safely
perform the measurement.

Some failures can be corrected in isolation, such as sweeping away metal particles
that are lowering the electrical resistance. Other failures can only be prevented
or corrected by replacing the entire joint, e.g., internal cracking in the end plate.
Some failures, such as vandalism, cannot be prevented by normal maintenance and
can only be corrected after they occur.

Figure 7.2: Depiction of the track circuit for train detection: the detec-
tion signal, depicted as the green line, is generated at the left of the images, and
the detector is at the right. The bottom image depicts the situation where the
track is clear, the red lines on the top picture indicate the axles of a train. 0

7.1.1 Joint construction
The major components of the EI-joint are shown in Figure 7.1, they are:

• The end post is a thin piece of insulating material between the rails. It
provides a smooth surface for the train wheels to roll and keeps the end of
the rail from touching each other.

0Source: https://commons.wikimedia.org/wiki/File:Track_circuit.png

161

• The fishplates are long, steel plates on either side of the rail, providing
mechanical strength to keep the joint from flexing too much when a train
drives over it. An insulating layer between the rails and fishplates prevents it
from making electrical contact.

• Bolts hold the fishplates in place. Insulating bushings prevent them from
touching the rails.

• Sleepers provide mechanical support for the rails. As the joints are a weak
spot in the rails, they should always be supported by two sleepers to prevent
flexing under load.

Two types of joints are commonly used in the Netherlands: glued and constructed.
In glued joints, the joint is produced in the factory fully assembled with several
metres of rail on each side. Glue is used to provide more mechanical strength than
would be delivered by the bolts alone. Glued joints are installed or replaced by
cutting a piece of track out of the existing railway, and welding the joint assembly
in its place. As most joints in the Netherlands are glued joints (45,000 out of
50,000), this chapter focuses on the analysis of that type.

Constructed joints are delivered as components, and installed by drilling holes
and cutting a small gap in an existing rail, placing the components in place and
holding them there using the bolts. Due to their lower strength, constructed joints
are only used on low-speed, lower-traffic sections of rail in the Netherlands such as
shunting tracks.

7.1.2 Failure modes
The possible failure modes of the EI-joint are well-documented internally by ProRail,
in the form of an FMECA. This document lists the failure modes, the conditions
under which they can occur, and the expected time to failure if no maintenance is
performed (under the assumption that the required conditions are present).

ProRail’s FMECA also provides a reference maintenance policy, which ProRail-
considers to adequately mitigate the risks of all the listed failure modes. The details
of this policy are kept confidential, as different contractors tender their own policies
when bidding for maintenance contracts. Each tendered policy is compared to the
reference policy, to ensure that the contractor still provides sufficient mitigations
for the listed risks.

EI-joints are subject to two general categories of failures: Mechanical failures
where the joint no longer provides a physical connection of the rails, and electrical
failures that lead to an unintended electrical connection between the rails. The for-
mer type are very rare, but have potentially catastrophic consequences (derailment
of trains). The latter failures are more common and are generally not considered
safety-critical due to the fail-safe nature of the detection system (i.e., they cause

162

ETTF
BE nr. Failure mode ETTF NRG Phases Prob. cnd.
1 Poor geometry 5 5 4 10%
2 Broken fishplate 8 12 4 33%
3 Broken bolts 15 20 4 33%
4 Rail head broken out 10 15 4 33%
5 Glue connection broken 10 15 4 33%
5a Manufacturing defect - - - 0.25%
5b Installation error - - - 0.25%
6 Battered head 20 22 4 5%
7 Arc damage 1 1 3 0.2%
8 End post broken out 7 8 3 33%
9 Joint bypassed: overhang 5 8 4 100%
10a Joint shorted: shavings (normal) 1 1 4 12%
10b Joint shorted: shavings (coated) 10 10 4 3%
11 Joint shorted: splinters 200 200 1 100%
12 Joint shorted: foreign object 250 250 1 100%
13 Joint shorted: shavings (grinding) 5000 5000 1 100%
14 Sleeper shifted 5000 5000 1 100%
15 Internal insulation failure 5000 5000 1 100%
16 End post jutting out 20 20 1 100%

Table 7.1: Parameters of the basic events of the FMT for the EI-joint.
The column ‘ETTF’ lists the expected time to failure in years, assuming no
maintenance is performed. The column ‘ETTF NRG’ lists the expected time to
failure in the NRG joint. The column ‘prob. cnd.’ gives the probability that a
given joint is subject to the condition that allows this failure mode to occur. Modes
5a and 5b have a fixed probability of occurring every time a joint is installed.

signals to stay red and switches to lock in their current position, which prevents
trains from moving, but does not create unsafe situations), although they do cause
disruptions of the train service.

Table 7.1 lists the most significant failure modes, together with important failure
parameters: Each mode is characterised by the expected time to failure assuming
no maintenance is performed, the number of degradation phases we consider in
our modelling (as described in Section 5.2), and the probability that a given joint
is subject to this failure mode. The latter is needed, since not all failure modes
occur in all situations. For instance, Line 1 in the table shows that only 10% of
the EI-joints are subject to poor geometry; 90% of the joints have a sufficiently
stable surface so that this failure mode never occurs.

A description of these failure modes is:

• Poor geometry: Due to poor surface conditions or incorrect installation,
the rails meet each other at an angle (usually vertically, though sometimes

163

horizontally). While this does not directly hamper the operation of the joint,
the poor geometry leads to increased wear due to increased flexing or passing
train wheels bumping against the rails.
Required conditions: Poor surface condition or incorrect installation.
Maintenance action: Correct surface conditions (if needed) and replace joint
with correct geometry.

• Broken fishplate: The fishplate breaks, usually at one of the bolts. In
many cases, cracking and tearing can be seen before a complete break occurs.
Required conditions: Located on soft surface, or occurrence of other failure
mode causing increased stress.
Maintenance action: Replace joint.

• Broken bolts: One or more bolts breaks, often breaking off at the head.
Once one bolt has broken, increased stress can quickly lead to the remaining
bolts failing, particularly on the same side of the joint.
Required conditions: Located on soft surface, or occurrence of other failure
mode causing increased stress.
Maintenance action: Replace joint.

• Rail head broken out: A piece of one of the rails breaks off of the rail
surface. This is usually caused by a deformation/discontinuity in or near
the end post, causing passing train wheels to knock against the surface and
weakening it until it breaks.
Required conditions: Imperfections in nearby track.
Maintenance action: Replace joint.

• Glue connection broken: The glue holding some components of the joint
together fails. Apart from reducing the mechanical strength of the joint, this
can allow openings to form that water can seep into, causing further damage.
Some cases of broken glue connections are caused by defects introduced in
manufacturing or excessive stress placed on the joint during installation.
Required conditions: Located on soft surface, or occurrence of other failure
mode causing increased stress.
Maintenance action: Replace joint.

• Battered head: Deformation of the surface(s) of the rail(s) near the joint.
This can occur due to a deformation/discontinuity in the surface near the joint,
as passing train wheels ‘bump’ or the surface and cause damage where they
land. As battered heads cause yet more such ‘bumping’, it often accelerates
other failure modes.
Required conditions: Damage to end post or nearby track.
Maintenance action: Grinding can correct small defects, larger deformation
requires replacement of the joint.

164

• Arc damage: The rails carry large electrical currents as part of the power
supply to trains. Normally, special filters are used to allow this current to
flow between the rails, bypassing the joint, while filtering out the detection
currents. If these filters fail or are too small for the current required, electrical
arcing can occur which causes local overheating of the rail and joint.
Required conditions: Damaged or insufficient filter transformer(s).
Maintenance action: Replace failed filters and joint.

• Joint bypassed: overhang: As trains pass over the joint, the pressure
from their wheels slightly ‘rolls out’ the surface of the track. Over time, this
causes a thin layer of steel to be rolled over the end post. If this overhanging
layer gets too long, it can create an electrical connection between the rails.
Maintenance action: Saw off overhanging metal.

• Joint shorted: shavings: If the wheels of a train do not pass smoothly
over the track, but rather scrape against it (e.g., if the flanges of the wheels
scrape against the side of a curved track), small metal particles get shaved off
of the track and wheels. Accumulation of such particles can form conductive
paths across the joint, lowering the electrical resistance. Some joints have an
insulating coating applied to the nearby rail, so that the shavings need to
form a longer path to contact both rails.
Required conditions: Installed in curved track.
Maintenance action: Sweep away metal shavings.

• Joint shorted: splinters: Splinters are thin pieces of metal scraped from
the rail when a wheel skids along it. This most often occurs when an
emergency brake is applied, as this can lock the wheels and make then slip
until the train stops. If a splinter lands across a joint, it can create an
electrical connection between the rails.
Required conditions: None, but more frequent if installed where emergency
braking occurs (mostly near stations).
Maintenance action: Sweep away metal splinters.

• Joint shorted: foreign object: A conductive object is placed connecting
the two rails. One frequent cause of this is vandals placing coins over a joint.
Maintenance action: Remove object.

• Joint shorted: shavings: One maintenance action taken to extend the life
of the entire length of rail is ‘grinding’. This shaves a thin layer of steel off of
the surface of the track, removing surface defects that could grow into larger
defects. If cleaning is not properly performed afterwards, the metal shaved
off of the rail can create electrical paths between the rails across the joint.
Maintenance action: Sweep away metal splinters.

165

• Sleeper shifted: Maintenance of the track sometimes requires the rail to
be detached from its sleepers (e.g., when a sleeper needs to be replaced).
Sometimes, the sleepers are not returned to their original position, which
can leave a joint insufficiently supported, resulting in increased flexing under
load.
Maintenance action: Move or install additional sleeper(s).

• Internal insulation failure: Sometimes, an electrical connection is mea-
surable between the rails with no externally visible cause. In these cases, the
joint is replaced and no further investigation is conducted into the cause, as
such failures are quite rare.
Maintenance action: Replace joint.

• End post jutting out: Due to deformation of the end post or, less com-
monly, the rails, part of the end post extends above the surface of the rail.
This causes the wheels of passing trains to knock against them, as well as
bump down against the subsequent piece of tail.
Maintenance action: Grind away piece extending above surface.

7.1.3 Inspections and repairs
A maintenance policy provided by ProRail to carry out this case study consists of
several annual inspections, followed by maintenance to repair any faults found by
the inspection. This policy is referred to as the reference policy in this chapter.

Inspections are performed by workers walking along the track and visually
inspecting (among other things) the joints for signs of damage or wear. To keep
the cost of inspections down, the track remains in operation during the inspection.
Unfortunately, this means that some parts of the joints (e.g., the parts on the inside
of the track) are difficult to see and defects here may be overlooked. If defects
are observed, more detailed inspections, such as electrical resistance measurement,
may be taken when the track is taken out of service.

If faults are found, either due to failure or inspection, a corrective action is
taken to correct it. Exactly which action is taken depends on the type of fault.
Some faults, such as metal shavings causing a short circuit, can be immediately
repaired without affecting any other failure mode. Other failure modes require
a more general corrective action, such as grinding the surface of the rails, which
also repairs wear of other failure modes. Finally, some failures require a complete
replacement of the joint, thus repairing degradation of all other failure modes.

7.1.4 NRG-Joint
Recently, a new model of EI-Joint, called the NRG-joint, has been developed by
the company Voestalpine Railpro. ProRail is considering to use this new joint

166

Figure 7.3: The newly developed NRG-joint [BV16].

in future installations and replacements of joints. The NRG-joint is designed to
have an improved reliability compared to the previous model, at the expense of
increased cost to purchase. We use FMTs to compare the expected reliability of
the NRG-joint to the existing joint types.

The NRG-joint (shown in Figure 7.3) is a redesigned version of a glued EI-joint,
with the following changes:

• Elongated fishplate to spread the stress on the plate.

• Six bolts instead of four, to reduce flexing when a train drives over the joint.

• Repositioned bolts to distribute stress over the bolts more evenly.

We worked with experts at ProRail to adjust the FMT of the glued joint to
reflect the redesign. We examined each failure mode, and asked the expert how
this mode would change in the new design. Some modes, (e.g., ‘Broken bolts’)
were adjusted to have considerably longer expected times to failure, while other
modes (e.g., ‘foreign object’) are unaffected by the redesign and left unchanged.
As only six joints were installed as a trial at the time of our analysis, we have to
trust expert judgement and cannot compare to historical failure data.

In this analysis, we included the same experts’ judgement to adjust the model
for the constructed joint model. We compare the reliabilities for the three joints,
to check that our adjustments match reality for the models for which failure data
is available.

7.2 Approach
In conducting the case study, we worked together with experts at ProRail to
construct and validate an FMT of the EI-joint, determine the appropriate metrics

167

Failure EI-joint

Mechanical failure Failure electrical isolation

42 3 5

5a 5b

RDEP

RDEP

1 8

14 15

Joint shorted

9 10a 10b 11 12 13

RDEP

6

Figure 7.4: Fault tree describing the major failure modes of the EI-joint.
The numbers in the basic events correspond to the section numbers of the failure
modes. Failure modes 5a and 5b are specific causes of failure mode 5 (broken
glue connection), due to manufacturing defects and installation errors, respectively.
Failure modes 6, 7, and 16 have been merged into mode 6, as these are specific
causes of the same fault. Failure mode 10 (short due to shavings) is separated
into 10a for joints without additional protective coating, and 10b for joints with
protective coating.

168

for evaluating the maintenance policies, and find an optimal maintenance strategy.
This section describes our process in analysing the case.

7.2.1 Qualitative modelling
To construct the FMT of the EI-joint, we used existing data from ProRail’s
FMECA, together with interviews with experts and historical data about recorded
failures. Using the FMECA to identify failure modes, and expert judgement
about the relationships between these modes, we created the structure of the FMT
shown in Figure 7.4. The maintenance policy was based on the reference policy
described in the FMECA, as well as information obtained in meetings with experts
from ProRail, from the consulting company Movares, and from the maintenance
contractor Arcadis/Assetrail.

The FMECA lists the failure modes that can occur in the EI-joint, along with
the worst-case consequences (i.e., derailment for mechanical failures, erroneous
indications of occupied tracks for electrical failures) these modes have. The purpose
of this document (in Dutch, the instandhoudingsconcept maintained by ProRail) is
to demonstrate, together with the maintenance policy, that the risk of the failure is
suitable low relative to the possible consequences. I.e., that failures that could cause
derailments are entirely prevented by maintenance, while erroneous detections, as
a less damaging outcome, are reduced to an acceptable rate.

We found that the FMECA is limited in its description of relationships between
the failure modes, e.g., that poor geometry will accelerate other failure modes.
After constructing a fault tree without these relationships, discussions with experts
were conducted to introduce RDEP gates representing these relationships.

The maintenance policy follows what is described in the FMECA, and was
confirmed by expert judgement. Discussions with ProRail and contractors indi-
cated that actual maintenance varies greatly depending on location and choice of
contractor, but the reference policy is a good indication of the national ‘average’
policy.

Upon obtaining the information needed to construct the structure of the FMT,
we created an Uppaal model using the templates described in Chapter 5. Each
failure modes is modelled as a basic event, and they are connected using OR and
RDEP gates.

The maintenance policy is described using inspection and repair modules (de-
scribed in Section 5.3). These modules proved versatile enough to model the
complex maintenance policy described in Section 7.1 where periodic inspections ob-
serve the condition of all the basic events at the same time, and initiate appropriate
repair modules (with many repairs modules triggerable by multiple inspections, e.g.,
the total joint replacement which is initiated for most mechanical failure modes).
The repair modules, in turn, perform corrective actions, often on multiple BEs at
once (again using joint replacement as an example, it resets the degradation of all

169

basic events).

7.2.2 Quantitative modelling
Apart from the structure of the fault tree and the maintenance actions, quantitative
analysis requires the estimation of the degradation/failure rates of the components,
as well as the timing and effects of the maintenance policy. In particular, we need
the following information:

• The mean time to failure of each failure mode.

• The number of phases in the Erlang distributions governing the failure time
of each failure mode.

• The probability of a given joint to be susceptible to each failure mode.

• The time between inspections for each inspection.

• The threshold of degradation at which action is taken following an inspection.

• The repaired components of each type of repair. That is, when a particular
failure mode is repaired, which other components are repaired at the same
time.

• The acceleration factors of the RDEP gates.

An expected time to failure (ETTF) is listed in the FMECA for each failure
mode, however this is not sufficient for an FMT: because basic events progress
through a number of degradation phases before failure, we need to include the
number of these phases. In addition, the FMECA describes the conditions required
for a failure mode to apply, but does not describe how often these conditions apply.

To elicit mode information, we sent a questionnaire to several experts in the
railway industry. This questionnaire (included as Appendix A) asked several
questions to determine the ETTF, variance of the ETTF (used to determine
the number of degradation phases), frequency of the condition required for the
failure, and the nature of the degradation process (linear wear, non-linear wear, or
exponentially distributed).

Our conclusions from the returned answers were:

• The ETTFs from the FMECA were close to the expert estimates.

• The variances of the failures modes were estimated and included in the model
using the number of phases in the Erlang distribution of the failure times.

170

• All the failure modes were due to either non-linear wear or exponentially
distributed failures. Answers for some failure modes were contradictory (e.g.,
stating that the failure is exponentially distributed, and thus memoryless, but
preventable by maintenance). In these cases, we used our own judgement.

• Many different failure modes require the same conditions, and the frequencies
of most of these conditions are relatively easy to estimate (e.g., the number
of joints installed in curved track was readily available).

Acceleration factors for the RDEPs were estimated by comparing the number
of failures predicted by the FMECA to cause an acceleration to the number of
failures predicted of the accelerated failure mode. Further refinements were made
in discussion with experts at ProRail, in particular to resolve cases where a failure
mode is accelerated by multiple causes.

Some further adjustments of the data was performed to align with historical
failure data, by identifying those failure modes for which far more/fewer failures
were predicted by the model (including maintenance) than were recorded. In
collaboration with experts, we identified whether the deviations were likely due to
incorrect estimates of the degradation parameters or due to inaccurate reporting,
and adjusted our model where necessary.

Costs. Information about the costs for repairs and inspections was provided
by ProRail, and corresponds to the amount ProRail pays their contractors for
performing the respective action. The cost of a failure is dominated by the social
cost of unavailability, i.e., the estimated cost to passengers and freight carriers due
to delays. While the exact value is confidential, the values in our model are based
on a four-hour disruption (the contractually specified time a contractor may take
to correct the issue) of a moderately busy track.

7.2.3 Metrics
We analyse several aspects of the dependability of the EI-joint, which can be used
to compare different maintenance policies and help in deciding which policy is
better. We consider the reliability, expected number of failures, and costs:

• Reliability. The probability of experiencing no system failures within a given
time period. We compute the probability that within a certain period, there
is never a time where a set of BEs is in a failed state leading to the occurrence
of the top level event of the FMT. While this is not the most interesting
metric for decision-making, we use it to demonstrate the importance of the
choice of inspection frequency.

• Expected number of failures. We compute the expected number of occurrences
of the top event in a given time window. Since all failures of the EI-joint can

171

be repaired, there can be multiple failures over time. We can also compute
the number of failures of individual components or subtrees of the FMT.

• Costs. We can measure several expected costs incurred by the system over
time. Specifically, we consider the costs of maintenance and failures. We
can further separate costs into the costs of inspections, specific maintenance
actions, and failures.

7.2.4 Validation
To check whether our model accurately represents the behaviour of the EI-joint,
we need to compare results predicted by the model to recorded data from the field.

As we have already used the failure data from individual failure modes to adjust
the model parameters, it is to be expected that their failure rates are close to reality,
and this is not a great metric for validation. Instead, we have three metrics we
can use for comparison: total failure rate, replacement rate, and total maintenance
cost.

The total failure rate is the number of times per year the top level event occurs.
Due to the relationships between the different failure modes, this number is not
the same as the sum of the rates of the individual failure modes. The accuracy of
this figure thus provides support for our claim that the model reflects reality.

The replacement rate is the number of new joints installed to replaced failed/worn
joints every year. As joint replacements are not included in the normal mainte-
nance contracts, they are tracked separately. Thus, this value is available with high
accuracy.

The total maintenance cost is more difficult to obtain from historical data:
ProRail has different kinds of contracts with its contractors, with different pricing
schemes and maintenance policies. Furthermore, exact financial information is
confidential and therefore not included in this thesis. Nonetheless, we conferred
with experts at ProRail who agreed that our predicted costs were close to the
actual costs.

Section 7.3 shows the results of our validation, concluding that our model
reflects reality well enough to make suggestions about improved maintenance
policies following the model’s predictions.

7.3 Analysis and results
In this section we describe the results of several experiments we conducted on the
FMT of the EI-Joint. As described in Section 7.2.4, we first validated the FMT
against observations from the field. Therefore, we used the model as constructed,
i.e., we analysed the EI-joint under the reference policy. Since we concluded
that the model is in line with the real world, we continued with finding possible

172

improvements of the reference policy. Therefore, the maintenance strategy within
the FMT was modified by changing inspection frequencies and replacements. This
led to a description of how an optimal maintenance strategy of the EI-Joint can be
constructed.

The results in this section were obtained using the Uppaal-SMC analysis as
description in Chapter 5. The results are averages of 40,000 simulation runs each.
The variance between the simulation runs is low enough that a 95% confidence
interval around the mean results has a width less than 1% of the indicated value.

7.3.1 Reference policy
To validate our model, we first estimate the total failure rate of the joint over
time, shown in Figure 7.5, under the reference maintenance policy. We notice that
the failure rate is mostly constant after the first few years, indicating that the
per-year average is a good metric for comparison. We thus divide the total number
of failures after 50 years by 50 to obtain the annual failure rate. This number is
within the margin of error of ProRail’s incident tracking.

Next, the expected number of occurrences of each failure mode per year was
estimated. A graphical breakdown of the causes of failures is displayed in Figure 7.6.
We find that approx. one quarter of the failures are due to mechanical failures, and
the rest due to electrical failures. Furthermore, we can see which failures contribute
most to the total failure rate (i.e., numbers 9 through 12), and which have almost
no impact at all (e.g., 3 and 13, part of the ‘other’ block).

ProRail maintains a record of joint failures by cause, and we compare the
predicted number of failures to the recorded number in Table 7.2. Since the
predicted failure rate is almost constant, we assume we can multiply the expected
failure rate by the number of joints to obtain the total number of failures, regardless
of the age of the joints in operation.

While most of failure modes show agreement between the model and reality,
some show significant differences. The difference between actual and predicted
failure rates for BE 1 is likely explained by inaccurate reporting, as engineers often
report only the immediate defect rather than the underlying poor geometry. BEs
2, 4, and 5 concern mechanical failures, which are typically often corrected during
maintenance before the officially specified threshold is reached.

As an additional validation, we estimate how often a joint is replaced due
to maintenance. Our model predicts approx. 3680 replacements per year, on a
population of 50,000 joints. ProRail records indicate approx. 3000 replacement
joints are installed each year. We expect that this difference is due to some failure
modes where the maintenance action induces a replacement in the model, whereas
in some cases in the real system the degradation may not has progressed so far,
resulting in only a minor maintenance action.

Next, we consider the costs of the joint. Figure 7.7 shows the costs over the

173

BE Failure cause Predicted Actual Difference
1 Poor geometry 110 48 62
2 Broken fishplate 129 83 46
3 Broken bolts 2.3 2.1 0.2
4 Rail head broken out 68 30 38
5 Glue connection broken 70 37 33
6 Battered head 3.4 5.5 2.1
7 Arc damage 7 3.4 3.6
8 End post broken out 12 9.4 2.6
9 Joint bypassed: overhang 212 200 12
10 Joint shorted: shavings 156 150 6
11 Joint shorted: splinters 254 261 7
12 Joint shorted: foreign object 199 200 1
13 Joint shorted: shaving from grinding 10 10 0
14 Damage by maintenance 19 18 1

Table 7.2: Comparison of predicted and actual failure rates of different
failure modes. Values are yearly occurrences in a population of 50,000 joints.

0 10 20 30 40 50
Year

C
um

ul
at
iv
e
fa
ilu

re
s

No inspections
1 insp. per year
2 insp. per year
4 insp. per year
8 insp. per year

Figure 7.5: Cumulative expected
number of failures of one EI-joint
over time, for different inspection
rates.

All failures

Mechanical Electrical

1 2 4 5

Other
mech.

9 10 11 12

Other
elec.

Figure 7.6: Breakdown of failures
of the EI-joint by cause. The num-
bers in the bottom row indicate individ-
ual failure modes, and correspond to the
numbers in Table 7.1.

174

0 10 20 30 40 50
Year

C
os
t

Total cost
Cost of inspections
Cost of prev. and corr. maint.
Cost of failures

Figure 7.7: Cumulative costs of
one EI-joint over time, split up by
type of cost.

0 2 4 6 8
Nr. of inspections per year

C
os
t

Total cost
Cost of inspections
Cost of prev. and corr. maint.
Cost of failures

Figure 7.8: Different types of total
costs for one joint, depending on the
inspection frequency.

lifetime of the joint, separated into the cost of inspections, failures, and maintenance
(including both preventive and corrective actions). As can be expected from the
progression of the cumulative number of failures, also the costs progress very
linearly over time. The computed values do not deviate much from ProRail’s
estimates.

7.3.2 Optimisation of maintenance policy
Having concluded that the model is a reasonably accurate description of the
behaviour of the EI-joint, we present some options for improving the reliability
and/or costs of the joint.

We consider varying the inspection frequency to reduce the total cost, and several
policies for more frequent replacement of the entire joint to improve reliability. We
find that it is possible to obtain considerable improvements in joint reliability, but
these improvements are outweighed by the large costs needed to achieve them.

Inspection frequencies. First, we consider the possibility of performing more
or fewer inspections. Figure 7.5 shows the cumulative expected number of failures
over time for different numbers of inspections, and Figure 7.9 the unreliability. We
see that the introduction of any inspections at all significantly reduces the number
of failures, but subsequent increases of the number of inspections have a much
smaller effect. This is due to failures either occurring gradually and being detected
even with infrequent inspections, or occurring suddenly, and rarely being found by
any inspection before failing.

175

0 2 4 6 8 10
Year

U
nr
el
ia
bi
lit
y

No inspections
1 insp. per year
2 insp. per year
4 insp. per year
8 insp. per year

Figure 7.9: Unreliability of the EI-joint under different maintenance policies.

In terms of improving reliability, clearly more inspections are always better.
Nonetheless, these results show diminishing returns when increasing the inspection
frequency above approximately two per year.

To estimate the cost-optimal number of inspections, we plot the total cost per
year for different inspection frequencies, shown in Figure 7.8. As expected, the costs
of failures decrease with more inspections, while the costs of inspections increase.
The maintenance costs are fairly constant over different inspection frequencies, as
increased inspections do lead to more necessary repairs, only repairs performed
sooner.

The optimal number of inspections in terms of total cost is found around
four inspections per year. The difference in total cost between approx. 2 and 6
inspections per year falls within the margin or error of the simulation, so no more
precise optimum can be determined. The reference policy lies within this optimal
range, so we cannot improve it by changing the inspection frequency.

Replacements. Several other options for maintenance policies are listed in Table
7.3. We consider three options:

• Always replacing the entire joint when any maintenance is required. Since
many of the failure modes have similar expected times to failure, it is reason-
able to assume that the first failure indicates that more failure will follow
soon. Thus, replacing after the first failure could prevent subsequent failures.

• Adjusting the inspections to take preventive action well before the reference
threshold. The current policy specifies a level of degradation that, when
observed in an inspection, leads to a maintenance action being performed. We
consider reducing this threshold to take action at a lower level of degradation,
reducing the likelihood that the degradation will cause a failure before the
next inspection.

176

Policy Maint. cost Total cost Failure frequency
Current 1 1 1
Replace instead of repair 2.20 1.65 0.76
Reduce threshold by 1/3 1.49 1.16 0.48
Replace every 5 yrs. 2.49 1.85 0.88
Replace every 10 yrs. 1.59 1.34 0.96
Replace every 20 yrs. 1.30 1.17 0.97

Table 7.3: Comparison of the effects of different maintenance policies, relative to
the reference policy.

Optimal inspection frequency
Cost Failure rate factor

factor 2 3/2 1 1/2
1/2 8 8 5 2
1 8 8 4 2

3/2 8 6 4 2
2 6 6 3 2

Relative cost
Cost Failure rate factor

factor 2 3/2 1 1/2
1/2 0.94 0.99 0.98 0.91
1 0.92 0.99 1 0.92

3/2 0.92 0.96 1 0.89
2 0.94 0.98 0.98 0.88

Table 7.4: Optimal inspection frequencies per year for different relative
failure rates and costs, and total cost of this policy compared to the
reference policy (4 per year). All costs (i.e., inspection, repair, and failure) are
increased by the same factor.

• Periodic replacements of the joint regardless of inspection result. Since the
normal lifespan of a joint is known, it may be useful to replace the joint
before this time to correct any (possibly hidden) degradation.

Our analysis finds that all these policies have higher total cost than the reference
policy. The reduced threshold on inspections does significantly decrease failures for
only a modest increase in total cost, but since total cost includes the social cost of
failure, we do not consider this a net gain. It is also questionable whether all failure
modes show signs of wear sufficiently early to allow this policy to be implemented.

It is likely that the failure rates of the joint vary depending on the intensity of
their use. Additionally, costs of unavailability due to failure or repair increase as
the number of passengers passing over the joint increases. We have not precisely
determined the correlation of these effects, but we have analysed the optimal
inspection frequency for several variations of costs and failure rates. The optimal
inspection frequencies are listed in Table 7.4, as well as the relative cost of the
optimal inspection policy compared to the previously computed optimum of 4
inspections per year.

177

0 20 40
Year

C
um

ul
at
iv
e
fa
ilu

re
s Glued

Constructed
NRG

Figure 7.10: Comparison of failure rates for the the constructed, glued,
and NRG joints.

We find that the optimal inspection frequency is determined primarily by the
degeneration rate, rather than by the cost. Furthermore, the optimal inspection
policy has at most a 12 percent cost saving compared to a general policy of four
inspections per year.

7.3.3 Comparison to new joint model
Figure 7.10 shows a comparison of the number of failures over time of the three
different joint types (glued, which is the type discussed in the rest of this section,
constructed, and the new NRG-joint). As expected, the NRG-joint shows a
moderate reduction in failure rate of around 25% compared to the glued joint. In
comparison, the constructed joint shows an increase of around 20%. The latter is
consistent with observed data, suggesting that our method for adjusting the model
is valid.

In addition to the reliability analysis, we compared the expected costs of
the joints under different maintenance policies. Although we cannot show the
figures due to confidentiality, we observe a reduction in total cost under reference
maintenance policy sufficiently large to justify the additional initial expense of the
NRG joint. We further observe that the optimal maintenance policy for the new
joint involves a reduced inspection frequency, yielding even greater cost savings.

7.3.4 Modelling power of FMTs
Our first research question of this chapter is about whether FMTs have sufficient
expressivity to capture the degradation behaviour and maintenance policies of

178

real-world systems. During this case study, we were able to model most of the
information available on the EI-joint using the FMT, and our validation shows
that the model is sufficiently accurate to make realistic predictions.

During the case study, we found two aspects of the degradation behaviour that
could not be directly included in the model: First, the reference policy provided by
ProRail describes the maintenance thresholds (i.e., at what level of degradation
does an inspection trigger a repair) in terms of physical observations. For example,
overhang is removed when less than 3mm of separation is observed between the
ends of the rails. FMTs model degradation as a more abstract ‘degradation phase’,
which does not have an obvious correspondence to such a physical measurement.

For the EI-joint, we assumed, after discussion with experts, that the maintenance
threshold is set at approximately 60% of degradation. Our validation confirms that
this is a reasonable assumption. For other systems, with more varied maintenance
threshold, individual threshold phases will need to be found.

A second difficulty is the acceleration factor of the failure mode ‘poor geometry’.
FMTs support a single acceleration factor, which applies whenever the triggering
failure mode has occurred. Poor geometry does not fit exactly in this model, as
the geometry can be more of less bad, with different accelerations depending on
how bad the geometry is. For our FMT, we used the acceleration that, following
expert judgement, corresponded to geometry that was noticably degraded, but not
so bad as to warrant immediate corrective action.

7.4 Conclusion
7.4.1 Conclusions on EI-joints
We have modelled and analysed several maintenance policies for the EI-joint via
fault maintenance trees. Our analysis concludes that a maintenance policy of four
inspections per year is near the optimal policy, and that small variations in this
policy have little effect on the total cost. We also find that qualitatively different
maintenance policies may increase reliability, but this effect is outweighed by the
increased maintenance costs. Finally, we find that the newly designed NRG-joint
is a cost-saving replacement for the current glued joints.

One may wonder how surprising it is that the reference maintenance strategy
is cost optimal under the existing circumstances. We argue that it might not be
so, because the EI-joint is a well-understood railroad element. Nevertheless, our
analysis has provided useful insights in the degradation behaviour of the joints, for
instance in critical accelerating factors.

Answering the research questions in the introduction of this chapter, we con-
clude:

1. Section 7.2 describes the process of modelling the EI-joint and its maintenance

179

policy in an FMT. The maintenance policies applied by ProRail can be
accurately modelled in the FMT, and the inspection and repair modules are a
good match to the visual inspections and preventive/corrective maintenance
actions prescribed.

2. Section 7.2.4 describes our process of validating our FMT of the EI-joint
against its actual dependability. Section 7.3.1 shows that the predictions of our
model are a good match to its actual behaviour, as recorded by ProRail. Based
on this, we expect that the model’s prediction with different maintenance
policies will also be sufficiently accurate to justify recommendations about
these policies.

3. Section 7.3.2 shows our FMT’s predictions about the effects of different
maintenance policies. We find that the reference policy is already within the
cost-optimal range with respect to the inspection frequency, and we cannot
recommend more cost-effective policies. We do find several variations on the
policy that give better reliability, but at a higher total cost.

4. We show a comparison of the new NRG joint to the currently installed
EI-joints in Section 7.3.3. We find that the NRG-joint offers better reliability
under the current maintenance policy, and that its cost-optimal inspection
frequency is lower than that of the current joints. We also find that the total
cost of the NRG-joint is lower than that of the current joints, although we
cannot show this result due to confidentiality.

Discussion and future work. In summary, we have demonstrated that FMTs
can be applied to this industrial setting, and can provide valuable insights into
the effects of different maintenance policies in terms of reliability and cost. Since
EI-joints exemplify many aspects typically found in industrial systems in terms
of degradation behaviour and maintenance policy, we expect that they may be
fruitfully applied in many other applications.

Future work includes the extension of FMTs to include continuous degradation
processes rather than the current discrete degradation phases. This extension could
provide a more natural description of the degradation in terms of the underlying
physics (e.g., describing overhanging rail surface in ‘millimetres of overhang’), as
well as a more natural and easier to understand maintenance description (e.g.,
removing overhang when exceeding ‘3 millimetres’ rather than ‘phase 2’).

Another avenue of future work is to extend FMTs to take into account specific
environmental and usage conditions that affect degradation. The current model is
based on average degradation rates, where a more detailed model could suggest
different maintenance policies depending on local traffic intensity, soil conditions,
etc.

180

Chapter 8

FMTs in practice: Analysis
of the pneumatic compressor

In this chapter, we demonstrate the applicability of FMTs to an industrial case
study: The trainboard pneumatic compressor. This study was performed in close
cooperation with NedTrain.

Compared to the EI-joint discussed in the previous chapter, the compressor
has a more complex maintenance policy: Several types of inspections and over-
hauls are performed at different times, ranging from a simple visual inspection
to a complete overhaul. The degradation behaviour is also more complex, with
components experiencing non-linear acceleration of wear rates from the wear of
other components.

Problem Statement. The goal of this case study is to explore whether FMTs
can be usefully applied in NedTrain’s reliability engineering efforts of the pneumatic
compressor. In particular, we examine the following research questions:

1. Are FMTs sufficiently expressive to capture the degradation behaviour and
maintenance policies of the compressor?

2. Can FMTs provide useful information with sufficient accuracy to make
recommendations about its maintenance policy?

3. How do variations of the maintenance policy affect the reliability of the
compressor?

Case description. Pneumatic compressors (shown in Figure 8.1, schematic in
Figure 8.2) are devices that produce compressed air, used in trains to power
systems such as doors and brakes. As they are critical to the operation of the
train, they are also potential causes of disruptions. Various causes of failure that
occur that must be prevented through periodic maintenance, lest the train become
stranded resulting in high costs due to disruption of the train schedule and delayed
passengers.

181

Air filter

Compressed
air before
cooling

Cooling fan Drive motor

Screw
casing

RadiatorAir dryer

Lubrication
oil filter

Oil fine filter

Figure 8.1: A pneumatic compressor. Air is drawn in from the environment
via the air filter and compressed by a set of screws. The compressed air is then
cooled, and moisture and oil particulates are removed before the air enters the
pneumatic system of the train. 1

The compressor is a relevant case study for three reasons: (1) The analysis is
useful for NedTrain’s internal operations for logistics and maintenance engineering
purposes; (2) the failure behaviour of the compressor in well documented through
internal documentation and historical failure data; and (3) maintenance of the
compressor is performed relatively independently of the rest of the train, as the
compressor can be replaced by a (recently maintained) one from stock, which gives
more freedom to optimise the maintenance program.

In this case study, most of the modelling work was performed by NedTrain
experts, while the translation to FMTs and their analysis was performed by us.

We compare the dependability and costs of compressors subject to different
maintenance policies. This allows us both to validate the model against actual
recorded failures, and to offer suggestions for improvements in the policy that lead
to cost savings or increased dependability.

Our analysis find that FMTs are a useful tool for analysing and optimising the
maintenance policy of the compressor. We obtain dependability estimates which
agree with historical failure data, and identify possible avenues of improvement
of the maintenance policy. In particular, we find that (1) one of the maintenance
actions has a substantially greater effect on system reliability than the others, and

1Image © NS, 2016.

182

(2) a currently scheduled overhaul may not be cost-effective.

Origin of this chapter. This chapter describes the case study published in:

• Enno Ruijters, Dennis Guck, Peter Drolenga, Margot Peters, and Mariëlle
Stoelinga. “Maintenance analysis and optimization via statistical model
checking: Evaluation of a train’s pneumatic compressor”. In Proceedings of
the 13th International Conference on Quantitative Evaluation of SysTems
(QEST), volume 9826 of Lecture Notes on Computer Science, pages 331–347.
Springer, August 2016. doi: 10.1007/978-3-319-43425-4_22, isbn: 978-
3-319-43424-7.

This case study was performed as part of an internship by an MSc student at
NedTrain, published (with more details on the internal process at NedTrain) in:

• Peter Drolenga. “Fault maintenance tree analysis in train systems”, 2015. In:
M. Peters, B. Huisman, and S. Hoekstra (supervisors) Industrial internship
report.

Acknowledgement. This case study was performed in collaboration with Ned-
Train; in particular, most of the modelling was performed by Peter Drolenga as
part of his internship at NedTrain, and Margot Peters.

Organisation of this chapter. In Section 8.1 we explain how the compressor
works and how it is maintained. Section 8.2 describes to process applied by
NedTrain and us to model and analyse the compressor. Section 8.3 shows the
results of the analysis, and Section 8.4 presents our conclusions.

8.1 Case description
Pneumatic systems have long been used as a control mechanism in trains. Braking
systems operated by air pressure date back to 1869 [Wes69], and are still in use
today. Although electronics are starting to replace or supplement pneumatic control,
modern trains still use pneumatics for emergency brakes and other applications,
such as opening and closing doors automatically and raising the pantograph to
connect to the overhead electrical line.

Many systems operated pneumatically are safety-critical, and these are designed
to be fail-safe: A loss of air pressure disrupts their functionality, but poses no
danger. Brakes, for example, are loosed by high pressure and applied when the
pressure drops. A failed compressor, therefore, does not constitute a safety risk.
Nonetheless, since a failed compressor leaves the train stranded, such failures cause
costly and lengthy disruptions.

183

https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22

Legend:
1.

A
ir

filter
2.

A
ir

filter
indicator

3.
O
ilcooler

4.
A
ir

cooler
5.

D
rive

m
otor

6.
D
e-aeration

valve
7.

A
ir

inlet
valve

8.
Safety

valve

9.
M
inim

um
pressure

valve

10.
C
oarse

oilfilter
11.

R
eturn

oilfilter
12.

Flow
controlvalve

13.
C
oarse

oilseparator

14.
Tem

perature
sw

itch

15.
C
rankcase

16.
D
rainage

plug

17.
Lubrication

oilfilter
18.

C
ontrolunit

19.
T
herm

ostat
valve

20.
Screw

s
21.

R
adialfan

22.
O
verpressure

safety

23.
V
iew

ing
glass

24.
B
ackflow

preventer
C
oolant

air
A
spirated

air
C
om

pressed
air

O
il

1
2

3
4

5
6

7
8

9

10111213141516

17
18

19
20

21

22

23

24

F
igure

8.2:
Schem

atic
view

of
the

com
ponents

of
the

com
pressor.

M
odified

from
[N

ed14].

184

As these compressors are critical to the operation of the train, they are also a
potential cause of disruptions. Various types of failures can occur, such as oil leaks
and clogged filters. Inspections are performed to determine whether failures are
likely to occur soon, and preventive action, such as replacing a nearly-full filter,
can be taken to prevent the failure occurring in the field. Some components such
as filters are also periodically replaced, since replacing them all in one service is
cheaper than spreading the replacements over multiple services when inspections
find a problem.

8.1.1 Purpose and operation
To provide high-pressure air for the pneumatically operated systems, modern trains
use electric compressors. In addition to generating a high pressure, the compressor
also clears the air of dust and debris, and removes moisture which could cause
corrosion or freezing in pipes and pneumatically-powered devices.

We examine the particular model of compressor used in Dutch VIRM (Verlengd
InterRegioMaterieel) trains of series 1, 2, and 3. This compressor operates using
rotating screws that take air from the outside and compress it into a pipe. Before
reaching the screw, the air first passes through a filter to remove any dust or debris.
The screw is lubricated using oil. Due to the relatively high temperatures and
airflow, micro-particles of oil are carried in the airflow through the system. To
remove this oil, the air passes through two additional filters. Finally, the air is
cooled and passed to the pneumatic system.

A schematic of the compressor with its airflow can be seen in Figure 8.2. Air
enters via a filter (1) due to pumping action of the screws (20). As the air passes
through the screws, droplets are carried by it to the high-pressure side of the screws
(15), these are removed by the oil separator (13) and oil filter (10) before the air is
cooled (4) and passes to the rest of the pneumatic system.

Various pressure-activated valves ensure that the system is not damaged by
over- or under-pressure and that the pressurised air does not flow back out through
the compressor when it is switched off. A thermostatic valve (19) causes some
oil to flow through a radiator to maintain an optimal temperature. Should this
cooling mechanism fail (e.g., if the radiator is obstructed), the temperature switch
(14) will disable the compressor when the oil/air temperature gets too high.

Failure modes

Based on documentation of failure characteristics and expert opinions of system
engineers and mechanics, the structure of the FMT was constructed. The resulting
FMT is displayed in Figure 8.3.

As shown in the FMT, compressor failures can be divided into two categories:
Complete failures where the compressor does not operate at all, and degraded

185

operation where the compressor does not generate a sufficiently high pressure. This
division helps validate the model, since these categories of failures are easy to
distinguish in a practical fault condition.

For this chapter, we consider only failures that prevent the train from operating,
meaning complete failure or so much degradation that immediate repair is necessary.
Other forms of degraded operation can be analysed similarly.

More details on the particular failure modes are listed below:

• Motor does not start at appropriate pressure: The compressor should
automatically activate when the pressure in the pneumatic system drops
below a threshold value. If the activation sensor fails, pneumatic pressure
may fall below required levels, resulting in a stranded train.

• De-aeration valve defective: When the compressor is started, pressure on
the high-pressure side must be relatively low. A de-aeration valve therefore
lets compressed air escape when the compressor is switched off. If this valve is
defective and the pressure is too high at the next start, a safety relay detects
that the motor is drawing too much power and switches it off.

• Two starts in short time: In most cases when the above-mentioned de-
aeration valve has failed, air can still slowly leave the compressor and allow it
to start later. Thus, a defective valve only causes a failure if the subsequent
start is within several seconds of the compressor switching off.

• Radiator obstructed: An obstruction due to e.g., dust of the radiator
will prevent adequate cooling, eventually leading to a shutdown to prevent
over-temperature damage.

• Oil thermostat defective: A defective thermostat will lead to insuffi-
cient/excess cooling of the oil. Excess cooling will reduce the efficiency of the
compressor, but not cause a failure. Insufficient cooling, on the other hand,
will lead to an over-temperature safety shutdown.

• Low oil level: Insufficient oil has two main consequences: increased wear of
the screws, and increased temperature (since the oil is also used as coolant).
In practice, the compressor usually experiences an over-temperature shutdown
before much additional wear is incurred.

• Pressure valve leakage: Several pressure valves ensure that the compressor
produce such a high pressure that other pneumatic systems are damaged. If
one or more of these valves do not close properly, air can leak out, eventually
preventing the system from reaching an adequate pressure to operate the
pneumatically-powered systems.

186

• Air filter obstructed: If an obstruction (e.g., dust), prevents airflow
through the intake filter, output pressure will also be reduced. If the airflow
is severely hampered, too little compressed air will be produced to keep the
pneumatically-powered systems operational.

• Degraded air filter: Damage to the air filter can allow particles of dust and
debris to enter the compressor. As the screws grind against these particles,
the screws experience increased wear.

• Particle-induced damage: This is wear caused by particles in the intake air
scraping against the screws (accelerated by the above-mentioned degradation
of the air filter, although even properly filtered air will contain some small
particles). If the screws become too worn, air can leak out past them, reducing
the pressure that can be generated.

• Oil pollution: Damage to the oil filter can allow particles to pass into the
screws via the oil. Similar to particles in the air, these eventually damage
the screws.

• Lubrication-induced wear: The screws require an adequate amount of
clean lubrication oil to function effectively. If too little oil is available, or the
oil is polluted, the screws cannot turn smoothly and the moving parts wear
out.

• Motor/bearings degraded: An electrical motor acts as the power source
for the compressor, and is lubricated by the same oil that lubricates the
screws. If this motor fails (often due to failure of the bearings inside), the
compressor will produce no/insufficient compressed air.

• Oil fine filter saturated: The oil fine filter is located outside the compressor,
and traps any remaining small droplets of oil present in the airflow. If this
filter becomes saturated, the rest of the pneumatic system may eventually be
damaged by escaping oil particles. If the filter is saturated when the system
is inspected, the compressor is subjected to a preventive overhaul to check
for damage.

• Degraded capacity: During some inspections, mechanics measure the time
needed to bring the pneumatic system to operating pressure under controlled
conditions. If this time is too long, the compressor is preventively subjected
to an overhaul.

Table 8.1 lists the types of failure that can occur, together with their failure
parameters: Each failure mode is characterised by the expected time to failure
assuming no maintenance is performed, and the number of degradation phases we
consider in our model.

187

Train
stranded

due
to

com
pressor

failure

N
o
operation

R
educed

capacity

1
Safety

relay
engaged

3

2

O
iltem

perature
safety

engaged

4
5

6

7
8

C
om

pressor
screw

s
w
orn

10
12

13

R
D
E
P

9

R
D
E
P

R
D
E
P

11

14
15

F
igure

8.3:
Fault

T
ree

describing
the

m
ajor

failure
m

odes
of

the
com

pressor.
T
he

num
bers

in
the

basic
events

correspond
to

the
num

bers
ofthe

failures
m
odes

in
Table

8.1.

188

Nr. Failure mode Nr. of phases ETTF
1 Motor does not start at appropriate pressure 3 16.6
2 De-aeration valve defective 3 200
3 Two starts in short time 2 0.001
4 Radiator obstructed 4 5.5
5 Oil thermostat defective 3 16.6
6 Low oil level 4 5.5
7 Pressure valve leakage 3 3.3
8 Air filter obstructed 2 500
9 Degraded air filter 4 5
10 Particle-induced damage 4 120
11 Oil pollution 4 5.5
12 Lubrication-induced wear 4 120
13 Motor/bearings degraded 4 120
14 Oil fine filter saturated 3 30
15 Degraded capacity 2 10

Table 8.1: Parameters of the failure modes of the compressor. The failure
times of the components follow an Erlang distribution with the indicated number
of phases and total expected time to failure (in years) assuming no maintenance
is performed. The values have been scaled for anonymity. Failure mode 3 is not
strictly a failure, but rather an event that is required for mode 2 to lead to failures.
Also failure modes 14 and 15 are not failures, but rather indicators of degradation
that are used to initiate maintenance actions, as described in Section 8.1.

189

State BE 6
State BE 11 0 1 2 3
0 1 2 4 6
1 2 4 6 10
2 4 6 10 15
3 6 10 15 30

Table 8.2: Specification of the acceleration factor of BEs 12 and 13,
depending on the states of BEs 6 and 11. The non-degraded state is state 0, the
failed state is state 3.

While modelling the compressor, it was noted that several failure modes are
related to each other, such as degradation of the air filter leading to increased wear
of the screws as particles pass through the filter and reach the screws. While it
is possible to model these independently as ‘particle-induced wear under normal
condition’ and ‘particle-induced wear with ruptured filter’ (since a degraded air
filter is not by itself a cause of failure), this leads to difficulty when describing the
maintenance policy. The RDEP gates offer a much more natural description of a
single BE with degradation that is accelerated by another BE.

The wear of the compressor screws and the motor and bearings is complicated
due to multiple causes. Particles can enter the compressor despite the filter, which
causes degradation of the screws. The rate at which particles pass through the
filter is significantly increased if the filter is already worn. A second mode of wear
is caused by insufficient lubrication of the screws and of the motor. This can be
caused by pollution of the oil, or by insufficient oil, or a combination of both.
Special variants of the RDEP gate are used that capture the simultaneous but
non-linear accelerating effects of filter and oil degradation. Table 8.2 specified how
much the affected BEs are accelerated depending on the states of the triggering
BEs.

One behaviour that was not included in the model is the low oil level, which can
be accelerated by oil leaks in several components. Since it is unlikely that multiple
such leaks occur at the same time, we instead chose to model the oil pressure as a
single BE.

The parameters of the BEs are listed in Table 8.1. The failure rates were obtained
by consultation with experts within NedTrain, specifically system engineers and
mechanics, to include both theoretical estimates and practical information. The
estimates were further informed by experiments conducted at the overhaul facility
operating a compressor in a simulated environment.

190

8.1.2 Maintenance
The current maintenance policy followed by NedTrain consists of some specific
inspections every two days, and scheduled services every three months with a larger
service every nine months. A minor overhaul is performed every three years and
a major overhauls every six years (for reasons of confidentiality, these times have
been scaled with the same factor as the BE failure rates).

The bi-daily inspection is mostly performed at night, while the train is prepared
for service. Mechanics check the on-board diagnostic system for recorded events
such as overpressure, and perform an inspection to find oil leaks or excessive noise.
If this inspection finds a defect, an unscheduled service is necessary to correct it.

During the scheduled services, consumable parts such as filters are replaced,
and components of the compressor are inspected for signs of wear. Some functional
tests of the overall performance of the compressor are also performed, such as
measuring the time needed to pressurise the pneumatic system for the entire train
starting from atmospheric pressure.

Every three years, the compressor is removed from the train and shipped to
NedTrain’s component workshop for an overhaul. Minor and major overhauls are
alternated. During an overhaul, the compressor is disassembled and all components
are examined and replaced if needed. During a minor overhaul components with a
small amount of wear are reused. During a major overhaul, all worn components
are replaced, and the compressor is considered as good as new afterwards.

Each maintenance action can also lead to more intensive services if problems
are found that cannot be corrected during the scheduled service. For example, if
a minor service inspection finds that the compressor is not producing sufficient
pressure but cannot find the cause, the compressor can be sent in for an overhaul.

NedTrain has specified the current maintenance policy, which is based on a
balance between performance, risks, and costs. The specification of this policy
consists of the frequency with which each maintenance action must be performed,
and for each BE and degradation level the effect of the action. The fault tree and
maintenance plan described in Sections 8.1.1 and 8.1.2 were constructed by the
research department of NedTrain.

Most maintenance actions return various components to the undegraded state
if they are found in a certain degraded state. This is modelled using separate
inspection and repair modules for the different BEs. For example, as shown in
Table 8.3, an inspection module inspects BE 11 every month checking whether it
has reached phase 3 and if so, repairs it. Some repair actions, in particular the
major overhaul, are initiated when other maintenance actions find excess wear. In
this case, the BE is modified to have multiple inspection thresholds for different
inspection modules.

The current model makes a few assumptions: First, we assume that all mainte-
nance is carried out exactly on schedule. In practice, maintenance actions with

191

scheduled intervals greater than one month are sometimes performed in the last 10
- 20% of the interval, to optimise allocation of resources. Since the fluctuations in
inspection times are small compared to the inspection interval and do not occur
often, we expect this assumption not to significantly distort the results.

We also assume that inspections are perfect, i.e., an inspection always leads
to a repair if the degradation level is past the threshold. While this may seem
questionable, we argue that the actual inspections are performed well enough that
this is not a significant source of error in the model. Moreover, we assume that
repairs occur instantly. Since the degradation rates already factor in that the
compressor is not in use all the time, we consider it reasonable to also factor in the
relatively short time spent in repair.

In the FMT, inspection modules describe the inspection rates and the threshold
at which corrective action is performed. Different BEs have different thresholds,
depending on the visibility of the degradation of a component and the importance
of correction.

Quantitative parameters on degradation patterns and parameters were estimated
based on interviews with maintenance engineers responsible for the maintenance
plan and system engineers specialised in pneumatics, as well as experiment reports
of a simulation environment where compressors can be tested.

While FMTs support arbitrary failure time distributions, determining the exact
distribution of each BE was beyond the scope of this case study. Instead, we have
modelled the BEs as exponential distributions or Erlang distributions with few
phases, as these overestimate the number of failures in the relatively short times
between maintenance actions. Due to the very high cost of failure compared to
maintenance, relying on a conservative model and performing more maintenance
than required is preferable to using an optimistic models and experiencing more
failures in the field.

While describing the maintenance policy, we found two properties of the system
that are used in maintenance scheduling (BEs 14 and 15), which are in fact complex
properties influenced by the degradation of most basic events. Since the exact
effect is too complex to include in the model, we instead treat these as basic events
that do not contribute to the top level event but are included in the maintenance
policy.

8.2 Approach

The modelling approach used for the pneumatic compressor is very similar to that
of the EI-joint, see Chapter 7.

Most of the modelling process was performed by NedTrain, so we do not go
into great detail here.

192

Maintenance Result
BE Phase action phase
1 2 M1/M2 1
1 2 O1 1
2 2 O1 1
3 2 Any 1
4 3 M1/M2 2
4 Any O1 1
5 2 M1/M2 O2
5 2 O1 1
6 Any M1/M2 1
6 Any O1 1
7 2 I1 1
7 2 M1/M2 1
8 Any M1/M2 1
8 Any O1 1
9 Any M1/M2 1
9 Any O1 1
11 3 or 4 M1 1
11 Any M2 1
11 Any O1 1
13 2 or 3 M1/M2 1
13 2 or 3 O1 1
14 2 M1/M2 1
14 3 M1/M2 O2
14 Any O1 1
15 2 M1/M2 O2
15 Any O1 1
Any Any O2 1

Legend:

• I1: bi-daily inspection

• M1: three-monthly maintenance

• M2: nine-monthly maintenance

• O1: minor overhaul
• O2: major overhaul

Table 8.3: Maintenance description for the compressor. Given a BE, a
phase of degradation, and a maintenance action, the table lists the effect of that
action on the degradation of the BE. I.e. the last column lists the phase to which
the BE moves when the given action is performed while the BE is in the listed
phase. If the top event occurs, and after some maintenance actions denoted with
result ‘O2’, a large overhaul is immediately performed resetting all components to
their undegraded state.

193

8.2.1 Qualitative modelling
The failure modes of the compressor were established by NedTrain, following
internal documentation, documentation from the manufacturer, and consultations
with the system engineer and technicians responsible for the pneumatic system
[Dro15].

A complication that arises in the compressor that was not present in the EI-joint,
is that multiple partial failures could combine to cause a system failure. Where the
failure modes of the EI-joint were mostly working or failed, many components of
the compressor can operate at a reduced capacity without immediately causing a
failure. For example, worn screws could result in lower, but still adequate, output
capacity, which can combine with a slightly leaky valve to cause an unacceptable
pressure drop.

The FMT does not model such combinations of partial failures for two reasons:
First, most failures can be attributed to a single (dominant) failure mode, even
if another provides some small contribution. A model with independent failure
modes is thus considered to adequately reflect reality. Second, quantifying the
combined effects of degraded components was considered too complex, and beyond
the scope of this case study.

One combination of partial failures was included: The combined accelerating
effects of low oil level and oil pollution on the wear of the screws and motor. This
was included because a combination of these accelerations is relatively common,
and the acceleration model used by NedTrain (specifying an acceleration factor
based on the sum of the degradation levels of the input BEs) is easy enough to
model.

The maintenance policy requires additional information that is not needed
for the failure model of the compressor: One maintenance action is to perform a
preventive overhaul in response to observations of an oil filter outside the compressor
(which does not contribute to compressor failures). Another is a regular functional
test of the entire compressor, the outcome of which is determined by the precise
state of all the various components.

The oil filter saturation and functional test depend on complex interactions
between component degradations in the compressor, which are considered beyond
the scope of this case study. Since the additional maintenance actions may still
affect compressor reliability, the FMT includes the filter and functional test as
independent BEs, thus effectively making these maintenance actions (stochastically)
time-based.

8.2.2 Quantitative modelling
A full modelling of the failure rates of the components was considered beyond the
scope of this case study. Instead, the rates were estimated on order of magnitude

194

[Dro15]. As this step was performed entirely by NedTrain, we cannot provide
details of how these estimates were obtained.

The failure rates were estimated for an ‘average’ usage profile of a compressor.
Since this model of compressor is applied in a single type of train (the VIRM), most
compressors will exhibit a similar usage, so this ‘average’ profile is justified. We
also assume that a compressor that is out of service (while stored in a warehouse
until it needs to be installed in a train) does not degrade, so our unit of time is
‘years of operation’, not necessarily calendar years.

8.2.3 Metrics

Our analysis of compressor focuses on the dependability, as information regarding
costs was not available. Two metrics are the main drivers of NedTrain’s maintenance
policy: expected number of failures and unplanned maintenance events:

• Expected number of failures. We compute the expected annual number of
occurrences of the top event ‘Train stranded due to compressor failure’. Such
failures are very costly, as they interrupt train service on the affected track
for several minutes to hours, and may require evacuation of the passengers of
the affected train. NedTrain’s estimate of the costs of such a failure are over
100,000 euros [Dro15].

• Unplanned maintenance events. If one of the planned maintenance ac-
tions/inspections finds a defect that cannot be immediately repaired, the
compressor is removed from the train and replaced by a functioning one, and
the failed compressor is sent away for repairs. While such a repair does not
normally affect train service, it does remove the affected train from service for
some time and thus requires a reserve train to be used. The more often this
occurs, the larger the reserve fleet must be. It is thus preferable to reduce
unplanned maintenance events if possible.

8.2.4 Validation

As the main purpose of this case study was to examine the modelling capabilities
of FMTs with regards to NedTrain’s failure models and maintenance policies, little
empirical validation was performed. The failure rates were estimated to around an
order of magnitude, and the resulting system failure rate and number of unplanned
maintenance events was compared to the actual rates (see Section 8.3). While the
results were within the expected range, the high uncertainty of the inputs makes is
impossible to perform a more precise validation.

195

0 2 4 6
0

0.05

0.1

0.15

Year

C
ou

nt

Unplanned maint. events
Total failures

Figure 8.4: Number of compres-
sor failures and unplanned mainte-
nance events over time. Note that
each failure also causes unplanned main-
tenance, but these are not included here.

All failures

No operation Reduced capacity

1 4 5

Other
no op.

10 12 13

Other
red. cap.

Figure 8.5: Breakdown of the fail-
ures of the compressor by cause.
The numbers in the bottom row cor-
respond to the failure causes in Table
8.1.

8.3 Analysis and results
In this section we describe the results of several experiments we conducted on
the FMT of the compressor. As a first step, we have validated the FMT using
the current maintenance policy against observations from the field. Therefore, we
used the model as constructed, i.e., we analysed the compressor under the current
policy. Since we concluded that the model is in line with our expectations based
on failure data, we continued with finding possible improvements of the current
policy. Therefore, the maintenance strategy within the FMT was modified by
changing inspection frequencies and replacements. This led to a description of how
an optimal maintenance strategy of the compressor can be constructed.

The results in this section are averages of 10,000 simulation runs each. The
variance between the simulation runs is low enough that a 95% confidence interval
around the mean results has a width of less than 5% of the indicated value, both
with the original and the anonymized values. The analysis required approx. 12
CPU-hours per model on a dual 2.26 GHz Intel® Xeon® E5520 processor and 24
GB of RAM.

First, we estimate the total failure rate of the compressor over time. We consider
NedTrain’s fleet of 239 compressors since this model of train began operation in
1994 until 2015. Due to long periods of time when compressors are kept unused
in a warehouse, a direct comparison to the model is not possible. Nonetheless,
comparing the models prediction to the NedTrain’s predicted annual failure rate of
compressors in operation, the model’s prediction is in agreement to within 50%.

196

Failure cause Failure rate
Motor does not start when asked 0.41
De-aeration valve defective 0.025
Radiator obstructed 2.48
Oil thermostat defective 0.40
Low oil level 0.34
Pressure valve leakage 0.22
Air filter obstructed 0
Particle-induced rupture 0.71
Lubrication-induced wear 0.86
Motor/bearings degraded 0.82

Table 8.4: Listing of the expected failure rates of different causes of
compressor failures. Values are yearly occurrences in a population of 233
compressors.

A graph of the cumulative number of failures over time is shown in Figure 8.4.
We observe that the unplanned maintenance events increase almost linearly with
time, as they are mostly caused by failures that are not wear-related, and thus
occur with exponentially distributed failure times. We only consider the interval
between two major overhauls, since the compressor is expected to be as good as
new after a major overhaul.

Other maintenance policies. To examine the leading causes of failures, the
expected number of occurrences of each failure mode per year was estimated.
Table 8.4 shows the annual number of expected failures, averaged over the six-year
period between major overhauls. A graphical breakdown of the causes of failures is
displayed in Figure 8.5. We see that the failure mode ‘radiator obstructed’ is by
far the leading cause of failure. The current maintenance policy for the radiator
is to remove large obstructions when found during visual inspections, and more
thoroughly clean it during larger maintenance operations. Our analysis suggests
that more frequent cleaning may cheaply reduce failures, although we note that
these failures are also usually quickly and cheaply resolved when they do occur.

Next, we consider two possible variations to the maintenance policy: Figure 8.6
shows the number of failures over time for different frequencies of the minor service.
We find that this service has a significant effect on the expected failure rate. It is
therefore useful to carefully examine the costs associated with this service, to find
an optimal balance between servicing and failure costs.

We also consider the possibility of omitting the minor overhaul after three
years, and of omitting the major overhaul after six years (instead performing a

197

0 2 4 6
0

0.1

0.2

Year

C
um

ul
at
iv
e
fa
ilu

re
s

Every 6 months
Every 3 months
Every 1.5 months

Figure 8.6: Effect of different frequen-
cies of the small service.

0 2 4 6 8 10 12
0

0.1

0.2

Year

C
um

ul
at
iv
e
fa
ilu

re
s

No minor overhauls
Normal policy
No major overhauls

Figure 8.7: Effect of the minor and
major overhauls.

minor overhaul at this time). The effects of which are graphed in Figure 8.7. After
six years, the minor overhaul has prevented approx. 0.02 failures per compressor.
This suggests that the overhaul may not be cost-effective, although this depends
strongly on the relative costs of the overhaul and the failure. Furthermore, the
effects of replacing the major overhaul by a minor one are too small to be measured
by our approach, offering a further possibility for cost savings. We do note, that
although we have no indications that the degradation behaviour will be noticeably
different after six years, we do not have the data to prove that nonlinear effects
such as metal fatigue will not cause more unexpected failures.

Modelling power of FMTs. One of the aims of this case study was to investi-
gate whether FMTs can capture the degradation and maintenance behaviour of
the pneumatic compressor. Based on the accuracy of the FMT’s predictions under
the current maintenance policy, we find that the FMT models most of the relevant
behaviour, and that this is sufficient to make predictions about other maintenance
policies.

The maintenance policy documented by NS/NedTrain for the compressor easily
fits the framework of FMTs, with multiple inspection and repair modules modelling
the different types of inspections and overhauls. Also the condition-dependent
effects of repairs can be modelled by separating the repair into an inspection and a
repair module.

Regarding the degradation of the compressor, two aspects do not easily fit
the FMT model: First, the wear of the screws and the motor and bearings is
more complicated than can be described in a normal FMT. This degradation
is accelerated by (partial) failure of the air filter, oil pollution, and lack of oil.
Combinations of these accelerations do not follow the multiplicative effect that

198

would be modelled by multiple RDEP gates. Therefore, a modified RDEP gate
was used with an acceleration factor that depends on the state of multiple trigger
events.

Second, the failure mode ‘Low oil level’ is caused by oil leaks, which can occur
with varying severities. A major leak can quickly drain most of the oil, while a
small leak causes a negligible increase in the normal rate of oil loss. Including an
event ‘Oil leak’ would not include these different severity levels. As major oil leaks
are very rare, we excluded from our analysis, and modelled the effects of small oil
leaks as part of the normal degradation rate of the oil level.

8.4 Conclusion

8.4.1 Conclusions on the compressor
We have modelled and analysed several maintenance policies for the compressor
via fault maintenance trees. Our analysis concludes that the FMT provides a
sufficiently accurate model of the wear and maintenance of the compressor to be
useful in its reliability engineering. Concretely, we find that the currently scheduled
overhauls have only a small effect on the expected number of annual failures, and
are therefore possibly not cost-effective.

Answering the research questions from the introduction of this chapter, we
conclude:

1. Section 8.2 describes the modelling process used to obtain the failure and
maintenance models, together forming the FMT, of the compressor. While
some aspects of the degradation were excluded from the model (notably, the
possibility of multiple partial failures combining to cause a system failure),
these are believed to be of little impact on the results. This is confirmed by
the accuracy of the FMT’s predictions under the current maintenance policy.

2. Section 8.2.3 describes the metrics computed in our analysis, and Section 8.3
shows our results. We were able to compute the requested metrics of expected
annual number of failures and unplanned maintenance events, demonstrating
that FMTs can yield useful metrics. Our validation shows that computed
metrics are sufficiently accurate under the current maintenance policy that
the predictions for alternative policies are likely also accurate.

3. Section 8.3 shows that the periodic service currently scheduled for every three
months has a strong effect on the reliability of the compressor, and is thus a
good candidate for optimisation. We also note that the scheduled overhauls
have only a small effect on the reliability.

199

Discussion and future work. In summary, this case study has demonstrated
that FMTs can be fruitfully applied to the pneumatic compressor. Furthermore,
the similarity between the modelling elements of the compressor and the EI-joint
strengthen our belief that these systems are representative of the degradation
and maintenance behaviours of systems in the railway industry and beyond. We
therefore expect that FMTs can be a useful tool in the analysis and optimisation
of maintenance policies in other systems as well.

With regard to the compressor in particular, one aspect was omitted from
the analysis to limit our scope: In practice, compressors are installed in a train,
operate until maintenance is required, removed for maintenance, and then stored in
a warehouse until installed in another train. Thus, a train may have a compressor
installed with a certain level of wear, and have it replaced by a much newer/older
compressor during maintenance. Our metrics are computed per compressor, and
it would be interesting to examine whether this warehousing behaviour can be
included to draw useful per-train results.

Next, our model describes failure rate in terms units of ‘per operating year’
under a normal usage profile. A more detailed description in terms of actual use
could allow the FMT to be used to analyse the expected future behaviour of a
particular compressor if its actual use is recorded. Such an analysis could be used
to schedule maintenance when the future reliability becomes too low, rather than
the current time-based schedule.

Lastly, FMTs model all components as degrading in a stepwise fashion (with
discrete degradation phases and jumps between them). While this abstraction
gives accurate results, it is not particularly realistic, as many failure modes follow
gradual degradation curves. In the compressor in particular, the oil level decreases
gradually, and the exact level can easily be measured during inspections. A model
of such gradual degradation could be more accurate, and would be easier to validate
against real-life measurements. An extension of FMTs with continuously-valued
degradation is currently being developed as part of the Sequoia project [SHK17].

200

Part IV

Conclusions

201

Chapter 9

Conclusions

This thesis set out to integrate maintenance into fault trees, and thereby provide a
framework for the integral analysis of maintenance and dependability. In particular,
the aim of the ArRangeer project was to develop a methodology that can be
used by the Dutch railway infrastructure asset manager ProRail to analyse and
optimise their maintenance policy. To that end, we have surveyed the state of the
art in fault tree analysis, and developed the formalism of fault maintenance trees
(FMTs), extending fault trees with advanced maintenance plans used in the railway
industry. We have developed techniques to analyse these FMTs using statistical
model checking, including the application of rare event simulation to reduce
computation time for high-availability systems. Finally, we have demonstrated that
fault maintenance trees can be applied in practice, using two case studies from the
railway industry.

9.1 Contributions
The main contribution of this thesis is the development of fault maintenance trees
and the analysis thereof. In particular, we have provided the following results:

• We have surveyed the literature on fault trees. We provide an overview of
over 150 papers on fault tree analysis, giving an in-depth description of the
state of the art in fault trees, their analysis, and extensions. In particular,
we introduce static fault trees, and describe the wide range of extensions
that have been developed, including dynamic FTs, repairable FTs, and FTs
dealing with uncertainty. For both static FTs and extensions, we review the
various qualitative and quantitative analysis techniques, with examples to
illustrate the different approaches.

• We have introduced the formalism of fault maintenance trees, extending fault
trees with multiple phases of degradation for components, inspection and
repair modules to undo this degradation, and rate-dependencies modelling
dependencies between failure rates of different components. FMTs can provide
quantitative insights into the dependability of systems subject to maintenance
and, when decorated with costs for maintenance and failures, can be used

203

to calculate the expected cost of a given maintenance policy, supporting
maintenance planners in finding the optimal plan.

• We have provided a translation to the timed automata formalism of the
Uppaal-SMC tool, allowing the analysis of FMTs using statistical model
checking. This provides statistically justified confidence intervals on quan-
titative metrics such as reliability, availability, and costs broken down into
failure costs, inspection costs, repair costs, etc.

• We developed an analysis method based on rare event simulation for dynamic
fault trees extended with the maintenance models of FMTs. This method
uses the recently developed Path-ZVA algorithm for importance sampling,
reducing the number of simulations (and thus computation time) required to
obtain tight confidence intervals for high-availability systems. This analysis
method can more quickly compute the availability of FMTs and repairable
DFTs, at the expense of approximating any fixed times for maintenance
actions by Erlang-distributed times.

• We have demonstrated the practical applicability of FMTs on two case studies
from the railway industry:

– In collaboration with ProRail, we have examined the wear and main-
tenance of an electrically insulated railway joint. Based on existing
documentation and meetings with experts, we have constructed an FMT
of the joint and a reference maintenance policy provided by ProRail.
We then analysed this model to validate it against historically observed
failures and to identify possible improvements to the reference policy.
We found that the failures and replacements predicted by the FMT are
a good match to reality, and that the reference policy is already close to
the cost-optimal policy.

– Together with the Dutch rolling stock maintenance company NS/Ned-
Train, we conducted an analysis of the pneumatic compressor used on
a particular model of Dutch trains. We helped develop an FMT of
its wear and maintenance, and analysed this FMT for validation and
improvements. We found that the predicted failure behaviour is close to
the actual failure rate, and identified that a routinely-scheduled overhaul
has little effect on the reliability, and thus may not be cost-effective.

9.2 Discussion and Future Work
We see several improvements that can be made in future research:

204

Automatic optimisation. FMTs currently support the analysis of a system
under a given maintenance strategy. Optimisation to find the best maintenance
policy involves performing multiple FMT analyses using different policies, and
selecting the best one. It would be useful to automatically select the optimal policy,
given a range of possible maintenance options.

A method has already been developed to synthesise near-optimal strategies for
stochastic priced timed games using machine learning [DJL+15]. We suspect that
it is possible to apply such an approach to the stochastic timed automata used in
FMT analysis to automatically generate cost-optimal maintenance policies.

Adaptation to predictive maintenance. This thesis provides an excellent
starting point for the development of more advanced models for predictive mainte-
nance. Current FMTs model a maintenance policy that is fixed in advance, with
condition-based decisions providing limited flexibility to reach to observations in
the field. A recent trend in maintenance engineering is predictive maintenance,
where a model of system degradation is constantly updated with information about
the current state of the system, allowing the prediction of future degradation and
thus better suggestions for maintenance timing.

As FMTs already contain a model of the degradation of the system, we expect
that they could be integrated into a predictive maintenance system. Observations
could be used to estimate the current degradation phases of the various compo-
nents, combined with the FMTs own predictions for components that cannot be
(accurately) observed. The FMT can then predict future degradation and failure
times, as well as how these are affected by various possible maintenance actions.
In this way, maintenance decisions can be optimised in real-time.

Exact analysis. The analysis methods for FMTs described in this thesis fun-
damentally rely on Monte Carlo simulation. While this is an excellent technique
to avoid the excessive memory consumption of many state space-based analysis
techniques, it has the drawback of yielding only confidence intervals rather than
exact results. We see two obstacles that need to be overcome in order to perform
an exact stochastic analysis.

First, reduction techniques need to be applied in order to keep the memory
requirements of the analysis of practical systems within reasonable bounds. Work
has already been done on such techniques for non-repairable dynamic fault trees
[VJK18], and we foresee that these techniques can also be applied to fault mainte-
nance trees.

Second is the challenge of performing exact analysis on the types of automata
describing the semantics of FMTs. As described in Chapter 5, FMTs support
arbitrary probability distributions for failure times, which makes exact analysis
extremely difficult. In practice, the case studies in Chapters 7 and 8 used only
Erlang-distributed failure times, and exact times for maintenance actions. Such

205

models correspond to a subset of stochastic timed automata, which likely allows
metrics to be computed by stochastic model checking.

Rare event simulation. Chapter 6 presented an importance sampling approach
to analysing the availability of fault maintenance trees. We think that this approach
can be improved in two, related, ways: supporting metrics other than availability,
and supporting non-Markovian probability distributions in the model. These
improvements are related, as the introduction of an exactly-timed (i.e., non-
Markovian) transition into the model is already sufficient to compute the system
reliability. Similarly, the case studies used only exactly-timed transitions for the
maintenance modules, so supporting exact times would already greatly improve
the applicability of our approach.

Modelling. One of the difficulties in reliability engineering of many systems is
the accurate modelling of the failure behaviour of individual components. Also
during the case studies in Part III of this thesis, much time was spent estimating
the unmaintained failure time distributions of various components.

We envision that this step can be facilitated by automating the extraction of
failure time distributions from measured data, e.g., failure databases. Already, the
Sequoia project [SHK17] has begun to use big data analysis techniques to automate
this step in the modelling. We expect that further development could substantially
reduce the time and effort needed to obtain quantitative information for FMTs.

9.3 Outlook
In conclusion, we believe that FMTs provide a powerful framework for the modelling
and analysis of the reliability of systems subject to maintenance. They are an
excellent starting point for the development of more advanced formalism for, e.g.,
predictive maintenance. They also offer a number of interesting challenges for
further research, such as automating the quantitative aspects of FMT modelling,
and more powerful analysis techniques.

The results of our case studies already demonstrate that FMTs are a valuable
tool in the analysis of maintenance policies for the railway industry. We expect
that FMTs can be similarly applied in other industries, and see the potential that
they can become a standard tool to aid maintenance planning both during and
after the design of reliable systems.

206

Bibliography

[AA04] Suprased V. Amari and Jennifer B. Akers. “Reliability analysis
of large fault trees using the vesely failure rate”. In Proceedings
of the Reliability and Maintainability Symposium (RAMS), pages
391–396. IEEE, January 2004. doi: 10.1109/RAMS.2004.1285481,
isbn: 978-0-7803-8215-2.

[AB03] John D. Andrews and Sally Beeson. “Birnbaum’s measure of compo-
nent importance for noncoherent systems”. IEEE Transactions on
Reliability, 52:213–219, June 2003. doi: 10.1109/TR.2003.809656,
issn: 0018-9529.

[ABvdB+13] Florian Arnold, Axel Belinfante, Freark van der Berg, Dennis Guck,
and Mariëlle Stoelinga. “DFTCalc: A tool for efficient fault tree
analysis”. In Proceedings of the 32nd International Symposium
on Computer Safety, Reliability, and Security (SAFECOMP), vol-
ume 8153 of Lecture Notes on Computer Science, pages 293–301.
Springer, 2013. doi: 10.1007/978-3-642-40793-2_27, isbn: 978-
3-642-40792-5.

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”.
Theoretical Computer Science, 126(2):183–235, April 1994. doi: 10.
1016/0304-3975(94)90010-8, issn: 0304-3975.

[AGE03] Suprasad Amari, Dill Glenn, and Howald Eileen. “A new approach
to solve dynamic fault trees”. In Proceedings of the Reliability and
Maintainability Symposium (RAMS), pages 374–379. IEEE, January
2003. doi: 10.1109/RAMS.2003.1182018, isbn: 978-0-7803-7717-2.

[Ake78] Sheldon B. Akers. “Binary decision diagrams”. IEEE Transactions
on Computers, C-27(6):509–516, June 1978. doi: 10.1109/TC.1978.
1675141, issn: 0018-9340.

207

https://doi.org/10.1109/RAMS.2004.1285481
https://doi.org/10.1109/RAMS.2004.1285481
https://doi.org/10.1109/TR.2003.809656
https://doi.org/10.1109/TR.2003.809656
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/RAMS.2003.1182018
https://doi.org/10.1109/RAMS.2003.1182018
https://doi.org/10.1109/TC.1978.1675141

[ALD] Advanced Logistics Development. Fault Tree Analysis (FTA) Soft-
ware. http://aldservice.com/en/reliability-products/fta.
html.

[ALRL04] Algirdas Avižienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. “Basic concepts and taxonomy of dependable and secure
computing”. IEEE Transactions on Depandable and Secure Comput-
ing, 1:11–33, 2004. doi: 10.1109/TDSC.2004.2, issn: 1545-5971.

[Arm95] Michael J. Armstrong. “Joint reliability-importance of components”.
IEEE Transactions on Reliability, 44:408–412, September 1995. doi:
10.1109/24.406574, issn: 0018-9529.

[Aut08] Automotive Industry Action Group. SAE J-1739 – Potential Failure
Mode & Effects Analysis, 2008.

[AZ11] Hananeh Aliee and Hamid Reza Zarandi. “Fault tree analysis using
stochastic logic: A reliable and high speed computing”. In Proceed-
ings of the Reliability and Maintainability Symposium (RAMS).
IEEE, January 2011. doi: 10.1109/RAMS.2011.5754466, isbn:
978-1-4244-8857-5.

[AZ13] Hananeh Aliee and Hamid Reza Zarandi. “A fast and accurate
fault tree analysis based on stochastic logic implemented on field-
programmable gate arrays”. IEEE Transactions on Reliability,
62:13–22, March 2013. doi: 10.1109/TR.2012.2221012, issn: 0018-
9529.

[BCK+11] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen
Nguyen, Thomas Noll, and Marco Roveri. “Safety, dependability and
performance analysis of extended AADL models”. The Computer
Journal, 54:754–775, 2011. doi: 10.1093/comjnl/bxq024.

[BCR04] Andrea Bobbio and Daniele Codetta-Raiteri. “Parametric fault trees
with dynamic gates and repair boxes”. In Proceedings of the Annual
Reliability and Maintainability Symposium, pages 459–465. IEEE,
2004. doi: 10.1109/RAMS.2004.1285491, isbn: 978-0-7803-8215-2.

[BCRFH08] Marco Beccuti, Daniele Codetta-Raiteri, Giuliana Franceschinis, and
Serge Hadded. “Non deterministic repairable fault trees for comput-
ing optimal repair strategy”. In Proceedings of the 3rd International
Conference on Performance Evaluation, Methodologies and Tools
(VALUETOOLS), article no. 56, October 2008. doi: 10.4108/ICST.
VALUETOOLS2008.4411, isbn: 978-963-9799-31-8.

208

http://aldservice.com/en/reliability-products/fta.html
http://aldservice.com/en/reliability-products/fta.html
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/24.406574
https://doi.org/10.1109/RAMS.2011.5754466
https://doi.org/10.1109/RAMS.2011.5754466
https://doi.org/10.1109/TR.2012.2221012
https://doi.org/10.1109/TR.2012.2221012
https://doi.org/10.1109/TR.2012.2221012
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.4108/ICST.VALUETOOLS2008.4411
https://doi.org/10.4108/ICST.VALUETOOLS2008.4411

[BCS07a] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. “A com-
positional semantics for dynamic fault trees in terms of interactive
Markov chains”. In Proceedings of the 5th International Symposium
on Automated Technology for Verification and Analysis (ATVA),
volume 4762 of Lecture Notes on Computer Science, pages 441–456.
Springer, 2007. doi: 10.1007/978-3-540-75596-8_31, isbn: 978-
3-540-75595-1.

[BCS07b] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. “CORAL:
a tool for compositional reliability and availability analysis”. In
ARTIST workshop, presented at the 19th International Conference
on Computer Aided Verification, 2007.

[BCS07c] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. “Dynamic
fault tree analysis using input/output interactive Markov chains”.
In Proceedings of the 37th International Conference on Dependable
Systems and Networks (DSN), pages 708–717. IEEE, 2007. doi: 10.
1109/DSN.2007.37, isbn: 978-0-7695-2855-7.

[BCS10] Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. “A rigorous,
compositional, and extensible framework for dynamic fault tree
analysis”. IEEE Transactions on Depandable and Secure Computing,
7(2):128–143, 2010. doi: 10.1109/TDSC.2009.45, issn: 1545-5971.

[BD05] Hichem Boudali and Joanne Bechta Dugan. “A new Bayesian net-
work approach to solve dynamic fault trees”. In Proceedings of
the Reliability and Maintainability Symposium (RAMS), pages
451–456. IEEE, January 2005. doi: 10.1109/RAMS.2005.1408404,
isbn: 978-0-7803-8824-6.

[BDL+12] P. Bulychev, A. David, K. G. Larsen, M. Mikuc̆ionis, D. B. Poulsen,
A. Legay, and Z. Wang. “UPPAAL-SMC: Statistical model checking
for priced timed automata”. In Proceedings of the 10th workshop
on Quantitative Aspects of Programming Languages (QAPL), 2012.
doi: 10.4204/EPTCS.85.1.

[BDM02] Simona Bernardi, Susanna Donatelli, and José Merseguer. “From
UML sequence diagrams and statecharts to analysable petri net
models”. In Proceedings of the 3rd International Workshop on
Software and Performance (WOSP), pages 35–45, 2002. doi: 10.
1145/584369.584376, isbn: 978-1-58113-563-3.

209

https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1109/DSN.2007.37
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1109/RAMS.2005.1408404
https://doi.org/10.1109/RAMS.2005.1408404
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.1145/584369.584376
https://doi.org/10.1145/584369.584376
https://doi.org/10.1145/584369.584376

[BFCRH09] Marco Beccuti, Giuliana Franceschinis, Daniele Codetta-Raiteri, and
Serge Haddad. “Parametric NdRFT for the derivation of optimal
repair strategies”. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), pages 399–408, 2009.
doi: 10.1109/DSN.2009.5270312, isbn: 978-1-4244-4422-9.

[BFCRH14] Marco Beccuti, Giuliana Franceschinis, Daniele Codetta-Raiteri,
and Serge Haddad. “Computing optimal repair strategies by
means of NdRFT modeling and analysis”. The Computer Journal,
57(12):1870–1892, December 2014. doi: 10.1093/comjnl/bxt134,
issn: 0010-4620.

[BG08] Irad Ben-Gal. “Bayesian networks”. Encyclopedia of Statistics in
Quality and Reliability, I, 2008. doi: 10.1002/9780470061572.
eqr089, isbn: 978-0-470-06157-2.

[BHD06] Gabriella Budai, Dennis Huisman, and Rommert Dekker. “Schedul-
ing preventive railway maintenance activities”. Journal of the Op-
erational Research Society, 57:1035–1044, 2006. doi: 10.1057/
palgrave.jors.260208, issn: 0160-5682.

[BHHK03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. “Model-checking algorithms for continuous-time
markov chains”. IEEE Transactions on Software Engineering,
29(6):524–541, June 2003. doi: 10.1109/TSE.2003.1205180, issn:
0098-5589.

[BHMT96] K. Bänsch, A. Hein, M. Malhotra, and K. Trivedi. “Comment/correc-
tion: Dependability modeling using Petri nets”. IEEE Transactions
on Reliability, 45(2):272–273, June 1996. doi: 10.1109/24.510814,
issn: 0018-9529.

[Bir68] Z. W. Birnbaum. “On the importance of different components
in a multicomponent system”. Technical report, Department of
Mathematics, University of Washington, 1968.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Check-
ing. MIT Press, 2008. isbn: 978-0-262-02649-9.

[Blo05] Neil B. Bloom. Reliability Centered Maintenance (RCM): Im-
plementation Made Simple. McGraw-Hill, 1 edition, 2005. isbn:
978-0-07-146069-9.

[BLR05] G. Behrmann, K. G. Larsen, and J. I. Rasmussen. “Priced timed
automata: Algorithms and applications”. In Formal Methods for

210

https://doi.org/10.1109/DSN.2009.5270312
https://doi.org/10.1109/DSN.2009.5270312
https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1002/9780470061572.eqr089
https://doi.org/10.1057/palgrave.jors.260208
https://doi.org/10.1057/palgrave.jors.260208
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/24.510814
https://doi.org/10.1109/24.510814
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://doi.org/10.1007/11561163_8
https://doi.org/10.1007/11561163_8

Components and Objects, volume 3657 of Lecture Notes on Computer
Science, pages 162–182. Springer, 2005. doi: 10.1007/11561163_8,
isbn: 978-3-540-29131-2.

[BMM99] Andrea Bondavalli, Istvan Majzik, and Ivan Mura. “Automatic
dependability analysis for supporting design decisions in UML”. In
Proceedings of the 4th IEEE International Symposium on High-
Assurance Systems Engineering (HASE), pages 64–71, November
1999. doi: 10.1109/HASE.1999.809476, isbn: 978-0-7695-0418-6.

[BNS09] Hichem Boudali, A. P. Nijmeijer, and Mariëlle I. A. Stoelinga. “DFT-
Sim: A simulation tool for extended dynamic fault trees”. In Pro-
ceedings of the 42nd Annual Simulation Symposium (ANSS) at the
Spring Simulation Multiconference (SpringSim), pages 31:1–31:8,
San Diego, California, USA, March 2009.

[Bor12] Carmen Lucia Tancredo Borges. “An overview of reliability models
and methods for distribution systems with renewable energy dis-
tributed generation”. Renewable and Sustainable Energy Reviews,
16(6):4008–4015, August 2012. doi: 10.1016/j.rser.2012.03.055,
issn: 1364-0321.

[Bou02] Marc Bouissou. “Boolean logic Driven Markov Processes: a powerful
new formalism for specifying and solving very large Markov mod-
els”. In E. J. Bonano, editor, Proceedings of the 6th International
Conference on Probabilistic Safety Assessment and Management
(PSAM), San Juan, Puerto Rico, USA, 2002. Elsevier. isbn: 978-
0-08-044122-1.

[Bou07] Marc Bouissou. “A generalization of dynamic fault trees through
boolean logic driven Markov processes (BDMP)®”. In Proceedings
of the 16th European Safety and Reliability Conference, Stavanger,
Norway, 2007. CRC Press. isbn: 978-0-415-44786-7.

[Bou08] Marc Bouissou. “BDMP (Boolean logic Driven Markov Processes)®
as an alternative to Event Trees”. In Proceedings of the European
Safety and Reliability Conference. CRC Press, 2008. isbn: 978-
0-415-48513-5.

[Bou12] M. Bouissou. “BDMP knowledge base for KB3”, 2012.
http://sourceforge.net/projects/visualfigaro/files/
Doc_and_examples/English/.

[BP75] R. E. Barlow and F. Proschan. Statistical Theory of Reliability
and Life Testing. Holt, Rinehart, & Winstron, 1975. isbn: 978-
0-9606764-0-8.

211

https://doi.org/10.1109/HASE.1999.809476
https://doi.org/10.1109/HASE.1999.809476
https://doi.org/10.1016/j.rser.2012.03.055
https://doi.org/10.1016/j.rser.2012.03.055
https://doi.org/10.1016/j.rser.2012.03.055
http://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/English/
http://sourceforge.net/projects/visualfigaro/files/Doc_and_examples/English/

[BPMC01] Andrea Bobbio, Luigi Portinale, Michele Minichino, and Ester Cian-
camerla. “Improving the analysis of dependable systems by map-
ping fault trees into Bayesian networks”. Reliability Engineering &
System Safety, 71(3):249–260, March 2001. doi: 10.1016/S0951-
8320(00)00077-6, issn: 0951-8320.

[Bry92] Randal E. Bryant. “Symbolic boolean manipulation with ordered
binary-decision diagrams”. ACM Computing Surveys, 24(3):293–318,
September 1992. doi: 10.1145/136035.136043.

[BT95] Meera Balakrishnan and Kishor Trivedi. “Componentwise decomposi-
tion for an efficient reliability computation of systems with repairable
components”. In Digest of Papers 25th International Symposium
on Fault-Tolerant Computing (FTCS), pages 259–268. IEEE, June
1995. doi: 10.1109/FTCS.1995.466972, isbn: 978-0-8186-7079-4.

[Buc99] Kerstin Buchacker. “Combining fault trees and Petri nets to model
safety-critical systems”. In Proceedings of the High Performance
Computing Symposium (HPC), pages 439–444. The Society for
Computer Simulation International, 1999.

[Buc00a] Kerstin Buchacker. Definition und Auswertung erweiterter Fehler-
bäume für die Zuverlässigkeitsanalyse technischer Systeme. PhD
thesis, Institut für Informatik Friedrich-Alexander-Universität Er-
langen Nürnberg, 2000. In German.

[Buc00b] Kerstin Buchacker. “Modeling with extended fault trees”. In Proceed-
ings of the 5th IEEE International Symposium on High-Assurance
Systems Engineering (HASE), pages 238–246, November 2000. doi:
10.1109/HASE.2000.895468, isbn: 978-0-7695-0927-3.

[BV10] Marco Bozzano and Adolfo Villafiorita. Design and Safety Assess-
ment of Critical Systems. CRC Press, 2010. isbn: 978-1-4398-0331-8.

[BV16] Voestalpine Railpro BV. “Plaatsings-, onderhouds- en
sloopvoorschrift energie-las (nrg-las)”, 2016.

[BW96] Beate Bollig and Ingo Wegener. “Improving the variable ordering
of OBDDs is NP-complete”. IEEE Transactions on Computers,
45(9):993–1002, September 1996. doi: 10.1109/12.537122, issn:
0018-9340.

[CDFH93] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “Stochas-
tic well-formed colored nets and symmetric modeling applications”.
IEEE Transactions on Computers, 42(11):1343–1360, 1993. doi:
10.1109/12.247838, issn: 0018-9340.

212

https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1016/S0951-8320(00)00077-6
https://doi.org/10.1145/136035.136043
https://doi.org/10.1145/136035.136043
https://doi.org/10.1109/FTCS.1995.466972
https://doi.org/10.1109/FTCS.1995.466972
https://doi.org/10.1109/FTCS.1995.466972
https://doi.org/10.1109/HASE.2000.895468
https://www.crcpress.com/Design-and-Safety-Assessment-of-Critical-Systems/Bozzano-Villafiorita/p/book/9781439803318
https://www.crcpress.com/Design-and-Safety-Assessment-of-Critical-Systems/Bozzano-Villafiorita/p/book/9781439803318
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/12.247838
https://doi.org/10.1109/12.247838

[CE82] Edmund M. Clarke and E. Allen Emerson. “Design and synthesis of
synchronization skeletons using branching time temporal logic”. In
Proceedings of the Workshop on Logic of Programs, volume 131 of
Lecture Notes on Computer Science, pages 52–71. Springer, 1982.
doi: 10.1007/BFb0025774, isbn: 978-3-540-11212-9.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. “Model
checking: algorithmic verification and debugging”. Communications
of the ACM, 52(11):74–84, November 2009. doi: 10.1145/1592761.
1592781.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT Press, 1999. isbn: 978-0-262-03270-4.

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. “A calculus
of durations”. Information Processing Letters, 40(5):269–276, 1991.
doi: 10.1016/0020-0190(91)90122-X, issn: 0020-0190.

[CM93] Olivier Coudert and Jean Christophe Madre. “Fault tree analysis:
1020 Prime implicants and beyond”. In Proceedings of the Reliability
and Maintainability Symposium (RAMS), pages 240–245. IEEE,
1993. doi: 10.1109/RAMS.1993.296849, isbn: 978-0-7803-0943-2.

[CM94] Olivier Coudert and Jean Christophe Madre. “MetaPrime: An
interactive fault-tree analyzer”. IEEE Transactions on Reliability,
43:121–127, March 1994. doi: 10.1109/24.285125, issn: 0018-
9529.

[CM11] Sergio Contini and Vaidas Matuzas. “New methods to determine the
importance measures of initiating and enabling events in fault tree
analysis”. Reliability Engineering & System Safety, 96(7):775–784,
2011. doi: 10.1016/j.ress.2011.02.001, issn: 0951-8320.

[Cn99] Juan A. Carrasco and Víctor Su né. “An algorithm to find minimal
cuts of coherent fault-trees with event-classes using a decision tree”.
IEEE Transactions on Reliability, 48:31–41, March 1999. doi: 10.
1109/24.765925, issn: 0018-9529.

[CP91] Danny I. Cho and Mahmut Parlar. “A survey of maintenance models
for multi-unit systems”. European Journal of Operational Research,
51(1):1–23, March 1991. doi: 10.1016/0377-2217(91)90141-H,
issn: 0377-2217.

[CR05a] Daniele Codetta-Raiteri. “The conversion of dynamic fault trees to
stochastic petri nets, as a case of graph transformation”. In Proceed-
ings of the Workshop on Petri Nets and Graph Transformations

213

https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://mitpress.mit.edu/books/model-checking
https://mitpress.mit.edu/books/model-checking
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1016/0020-0190(91)90122-X
https://doi.org/10.1109/RAMS.1993.296849
https://doi.org/10.1109/RAMS.1993.296849
https://doi.org/10.1109/24.285125
https://doi.org/10.1109/24.285125
https://doi.org/10.1016/j.ress.2011.02.001
https://doi.org/10.1016/j.ress.2011.02.001
https://doi.org/10.1016/j.ress.2011.02.001
https://doi.org/10.1109/24.765925
https://doi.org/10.1109/24.765925
https://doi.org/10.1016/0377-2217(91)90141-H
https://doi.org/10.1016/0377-2217(91)90141-H
https://doi.org/10.1016/j.entcs.2005.02.005
https://doi.org/10.1016/j.entcs.2005.02.005

(PNGT), volume 127(2) of Electronic Notes in Theoretical Com-
puter Science, pages 45 – 60, March 2005. doi: 10.1016/j.entcs.
2005.02.005.

[CR05b] Daniele Codetta-Raiteri. Extended Fault Trees Analysis supported
by Stochastic Petri Nets. PhD thesis, Università degli Studi di
Torino, 2005.

[CR06] Daniele Codetta-Raiteri. “BDD based analysis of parametric fault
trees”. In Proceedings of the Reliability and Maintainability Sympo-
sium (RAMS), pages 442–449. IEEE, January 2006. doi: 10.1109/
RAMS.2006.1677414, isbn: 978-1-4244-0007-2.

[CR11] Daniele Codetta-Raiteri. “Integrating several formalisms in order
to increase fault trees’ modeling power”. Reliability Engineering &
System Safety, 96(5):534–544, 2011. doi: 10.1016/j.ress.2010.
12.027, issn: 0951-8320.

[CRFIV04] Daniele Codetta-Raiteri, Giuliana Franceschinis, Mauro Iacono, and
Valeria Vittorini. “Repairable fault tree for the automatic evaluation
of repair policies”. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), pages 659–668. IEEE,
2004. doi: 10.1109/DSN.2004.1311936, isbn: 978-0-7695-2052-0.

[CRL+11] Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles
Deleuze, and Marc Bouissou. “Qualitative analysis of a BDMP
by finite automaton”. In Proceedings of the European Safety and
Reliability Conference, pages 2050–2057. CRC Press, 2011. isbn:
978-0-415-68379-1.

[CRL+12] Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles
Deleuze, and Marc Bouissou. “Systematic extraction of minimal cut
sequences from a BDMP model”. In Proceedings of the European
Safety and Reliability Conference, pages 3344–3351, 2012.

[CRL+13] Pierre-Yves Chaux, Jean-Marc Roussel, Jean-Jacques Lesage, Gilles
Deleuze, and Marc Bouissou. “Towards a unified definition of minimal
cut sequences”. In Proceedings of the 4th IFAC Workshop on Depend-
able Control of Discrete Systems (DCDS), volume 46(22) of IFAC
Proceedings Volumes, pages 1–6. Elsevier, September 2013. doi: 10.
3182/20130904-3-UK-4041.00013, isbn: 978-3-902823-49-6.

[Cro71] Paul A. Crosetti. “Fault tree analysis with probability evaluation”.
IEEE Transactions on Nuclear Science, 18(1):465–471, February
1971. doi: 10.1109/TNS.1971.4325911, issn: 0018-9499.

214

https://doi.org/10.1109/RAMS.2006.1677414
https://doi.org/10.1109/RAMS.2006.1677414
https://doi.org/10.1016/j.ress.2010.12.027
https://doi.org/10.1016/j.ress.2010.12.027
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/DSN.2004.1311936
https://hal.archives-ouvertes.fr/hal-00782748
https://hal.archives-ouvertes.fr/hal-00782748
https://hal.archives-ouvertes.fr/hal-00782735
https://hal.archives-ouvertes.fr/hal-00782735
https://doi.org/10.3182/20130904-3-UK-4041.00013
https://doi.org/10.3182/20130904-3-UK-4041.00013
https://doi.org/10.1109/TNS.1971.4325911

[CW01] Carlos Carreras and Ian D. Walker. “Interval methods for fault-tree
analysis in robotics”. IEEE Transactions on Reliability, 50:3–11,
2001. doi: 10.1109/24.935010, issn: 0018-9529.

[CY88] Costas Courcoubetis and Mihalis Yannakis. “Verifying temporal
properties of finite-state probabilistic programs”. In Proceedings of
the 29th Annual Symposium on Foundations of Computer Science,
pages 338–345. IEEE, 1988. doi: 10.1109/SFCS.1988.21950, isbn:
978-0-8186-0877-3.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. “Interface automata”.
In Proceedings of the Joint 8th European Software Engineering
Conference and 9th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 109–120. ACM
Press, September 2001. doi: 10.1145/503209.503226, isbn: 978-
1-58113-390-5.

[DBB90] Joanne Bechta Dugan, Salvatore J Bavuso, and Mark A Boyd. “Fault
trees and sequence dependencies”. In Proceedings of the Annual
Reliability and Maintainability Symposium, pages 286–293. IEEE,
1990. doi: 10.1109/ARMS.1990.67971.

[DBB92] Joanne Bechta Dugan, Salvatore J. Bavuso, and Mark A. Boyd.
“Dynamic fault-tree models for fault-tolerant computer systems”.
IEEE Transactions on Reliability, pages 363–377, September 1992.
doi: 10.1109/24.159800, issn: 0018-9529.

[DCC+02] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly,
Salem Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G.
Webster. “The Möbius framework and its implementation”. IEEE
Transactions on Software Engineering, 28(10):956–969, October
2002. doi: 10.1109/TSE.2002.1041052, issn: 0098-5589.

[Dek95] Rommert Dekker. “On the use of operations research models
for maintenance decision making”. Microelectronics Reliability,
34(9–10):1321–1331, 1995. doi: 10.1016/0026-2714(95)99380-2,
issn: 0026-2714.

[Dek96] Rommert Dekker. “Applications of maintenance optimization models:
a review and analysis”. Reliability Engineering & System Safety,
51(3):229–240, March 1996. doi: 10.1016/0951-8320(95)00076-3,
issn: 0951-8320.

[Dem86] W. E. Deming. Our of the Crisis. MIT Press, 1986. isbn: 978-
0-262-54115-2.

215

https://doi.org/10.1109/24.935010
https://doi.org/10.1109/24.935010
https://doi.org/10.1109/SFCS.1988.21950
https://doi.org/10.1109/SFCS.1988.21950
https://doi.org/10.1145/503209.503226
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1109/24.159800
https://doi.org/10.1109/TSE.2002.1041052
https://doi.org/10.1016/0026-2714(95)99380-2
https://doi.org/10.1016/0026-2714(95)99380-2
https://doi.org/10.1016/0951-8320(95)00076-3
https://doi.org/10.1016/0951-8320(95)00076-3

[dJKTT15] Bram de Jonge, Warse Klingenberg, Ruud Teunter, and Tiedo Tinga.
“Optimum maintenance strategy under uncertainty in the lifetime
distribution”. Reliability Engineering & System Safety, 133:59–67,
January 2015. doi: 10.1016/j.ress.2014.09.013, issn: 0951-
8320.

[dJKTT16] Bram de Jonge, Warse Klingenberg, Ruud Teunter, and Tiedo Tinga.
“Reducing costs by clustering maintenance activities for multiple
critical units”. Reliability Engineering & System Safety, 145:93–103,
January 2016. doi: 10.1016/j.ress.2015.09.003, issn: 0951-
8320.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and
Matthias Volk. “A STORM is coming: A modern probabilistic
model checker”. In Proceedings of the International Conference on
Computer Aided Verification (CAV), volume 10427 of Lecture Notes
on Computer Science, pages 592–600. Springer, 2017. doi: FIXME,
isbn: 978-3-319-63390-9.

[DJL+15] Alexandre David, Peter Gjøl Jensen, Kim Gulstrand Larsen, Marius
Mikuc̆ionis, and Jakob Haahr Taankvist. “Uppaal stratego”. In
Proceedings of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS),
volume 9035 of Lecture Notes on Computer Science, pages 206–211.
Springer, 2015. doi: 10.1007/978-3-662-46681-0_16, isbn: 978-
3-662-46680-3.

[DP07] Salvatore Distefano and Antonio Puliafito. “Dynamic reliability
block diagrams: Overview of a methodology”. In Proceedings of
the European Safety and Reliability Conference, volume 7, pages
1059–1068, 2007. isbn: 978-0-415-44786-7.

[DR96] Yves Dutuit and Antoline B. Rauzy. “A linear-time algorithm to
find modules of fault trees”. IEEE Transactions on Reliability,
45:422–425, September 1996. doi: 10.1109/24.537011, issn: 0018-
9529.

[DR01] Yves Dutuit and Antoine B. Rauzy. “Efficient algorithms to assess
component and gate importance in fault tree analysis”. Reliability
Engineering & System Safety, 72(2):213–222, 2001. doi: 10.1016/
S0951-8320(01)00004-7, issn: 0951-8320.

[DR05] Yves Dutuit and Antoline B. Rauzy. “Approximate estimation of
system reliability via fault trees”. Reliability Engineering & System

216

https://doi.org/10.1016/j.ress.2014.09.013
https://doi.org/10.1016/j.ress.2014.09.013
https://doi.org/10.1016/j.ress.2015.09.003
https://doi.org/10.1016/j.ress.2015.09.003
https://doi.org/FIXME
https://doi.org/FIXME
https://doi.org/10.1007/978-3-662-46681-0_16
http://cia.unime.it/documents/esrel07drbd.pdf
http://cia.unime.it/documents/esrel07drbd.pdf
https://doi.org/10.1109/24.537011
https://doi.org/10.1109/24.537011
https://doi.org/10.1016/S0951-8320(01)00004-7
https://doi.org/10.1016/S0951-8320(01)00004-7
https://doi.org/10.1016/j.ress.2004.02.008
https://doi.org/10.1016/j.ress.2004.02.008

Safety, 87(2):163–172, 2005. doi: 10.1016/j.ress.2004.02.008,
issn: 0951-8320.

[DRGSR+09] K. Durga Rao, V. Gopika, V. V. S. Sanyasi Rao, H. S. Kushwaha,
Ajit Kumar Verma, and Ajit Srividya. “Dynamic fault tree analysis
using monte carlo simulation in probabilistic safety assessment”.
Reliability Engineering & System Safety, 94(4):872–883, April 2009.
doi: 10.1016/j.ress.2008.09.007, issn: 0951-8320.

[Dro15] Peter Drolenga. “Fault maintenance tree analysis in train systems”,
2015. In: M. Peters, B. Huisman, and S. Hoekstra (supervisors)
Industrial internship report.

[DVG97] Joanne Bechta Dugan, Bharath Venkataraman, and Rohit Gulati.
“DIFtree: A software package for the analysis of dynamic fault
tree models”. In Proceedings of the Reliability and Maintainability
Symposium (RAMS), pages 64–70. IEEE, January 1997. doi: 10.
1109/RAMS.1997.571666, isbn: 978-0-7803-3783-1.

[DWvdDS97] Rommert Dekker, Ralph E. Wildeman, and Frank A. van der
Duyn Schouten. “A review of multi-component maintenance models
with economic dependence”. Mathematical Methods of Operations
Research, 45(3):411–435, October 1997. doi: 10.1007/BF01194788,
issn: 1432-2994.

[DX06] Salvatore Distefano and Liudong Xing. “A new approach to mod-
eling the system reliability: dynamic reliability block diagrams”.
In Proceedings of the Reliability and Maintainability Symposium
(RAMS). IEEE, January 2006. doi: 10.1109/RAMS.2006.1677373,
isbn: 978-1-4244-0007-2.

[Eas84] N. W. Eason. “Data as an asset”. In Proceedings of the 6th National
Conference on Computers for Maintenance Managers, 1984.

[Ebe97] Charles E. Ebeling. An Introduction to Reliability and Maintain-
ability Engineering. McGraw-Hill, 1997. isbn: 978-1-57766-625-7.

[EC06] “Directive 2006/42/EC of the European Parliament and of the
Council of 17 May 2006 on machinery”, 2006.

[EEC89] “EEC council directive 89/391/EEC of 12 June 1989 on the intro-
duction of measures to encourage improvements in the safety and
health of workers at work”, 1989.

217

https://doi.org/10.1016/j.ress.2008.09.007
https://doi.org/10.1016/j.ress.2008.09.007
https://doi.org/10.1109/RAMS.1997.571666
https://doi.org/10.1109/RAMS.1997.571666
https://doi.org/10.1007/BF01194788
https://doi.org/10.1007/BF01194788
https://doi.org/10.1109/RAMS.2006.1677373
https://doi.org/10.1109/RAMS.2006.1677373

[EHZ10] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. “On
probabilistic automata in continuous time”. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 342–351, 2010. doi: 10.1109/LICS.2010.41, isbn:
978-1-4244-7588-9.

[EIO98] Aly El-Iraki and Emmanual R. Odoom. “Fuzzy probist reliability
assessment of repairable systems”. In Proceedings of the Confer-
ence of the North American Fuzzy Information Processing Soci-
ety (NAFIPS), pages 96–100. IEEE, August 1998. doi: 10.1109/
NAFIPS.1998.715544, isbn: 978-0-7803-4453-2.

[Eme16] Emerson. “How manufacturers achieve top quartile performance”,
2016.

[ENN13] Bernhard Ern, Viet Yen Nguyen, and Thomas Noll. “Characteriza-
tion of failure effects on AADL models”. In Bitsch F., Guiochet J.,
and Kaâniche M., editors, Proceedings of the International Sympo-
sium on Computer Safety, Reliability, and Security (SAFECOMP),
volume 8153 of Lecture Notes on Computer Science, pages 241–252.
Springer, 2013. doi: 10.1007/978-3-642-40793-2_22, isbn: 978-
3-642-40792-5.

[EPR] EPRI. CAFTA. http://www.epri.com/abstracts/Pages/
ProductAbstract.aspx?ProductId=000000000001015514.

[Eri99] Clifton A. Ericson. “Fault Tree Analysis – a history”. In Proceedings
of the 17th International System Safety Conference, pages 1–9,
Orlando, Florida, USA, 1999.

[FAA98] Federal Aviation Administration, U.S. Department of Transportation.
FAA Order 8040.4: Safety Risk Management, 1998.

[FAA00] Federal Aviation Administration, U.S. Department of Transportation.
System Safety Handbook, 2000.

[FAA05] U.S. Department of Transportation Federal Aviation Administration.
AC 431.35-2A – Reusable launch and reeintry vehicle system safery
process, 2005.

[FAA18] Federal Aviation Administration. Maintenance, Preventive Mainte-
nance, Rebuilding, and Alteration, chapter 1(C), Part 43. Govern-
ment Publishing Office, 2018.

218

https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/NAFIPS.1998.715544
https://doi.org/10.1109/NAFIPS.1998.715544
https://doi.org/10.1007/978-3-642-40793-2_22
https://doi.org/10.1007/978-3-642-40793-2_22
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001015514
http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001015514

[FG12] Peter H. Feiler and David P. Gluch. Model-Based Engineering with
AADL: An Introduction to the SAE Architecture Analysis & Design
Language. Addison-Wesley, 2012. isbn: 978-0-13-420889-3.

[FHM74] J. B. Fussell, E. B. Henry, and N. H. Marshall. “MOCUS: a computer
program to obtain minimal sets from fault trees”. Technical report,
Aerojet Nuclear Co., Idaho Falls, 1974.

[Fis96] George Fishman. Monte Carlo: Concepts, Algorithms, and Ap-
plications. Springer Series in Operations Research and Financial
Engineering. Springer, 1996. doi: 10.1007/978-1-4757-2553-7,
isbn: 978-0-387-94527-9.

[FK06] Marc Förster and Bernhard Kaiser. “Increased efficiency in the
quantitative evaluation of state/event fault trees”. In Proceedings
of the 12th IFAC Symposium on Information Control Problems
in Manufacturing, volume 39(3) of IFAC Proceedings Volumes,
pages 255–260. Elsevier, 2006. doi: 10.3182/20060517-3-FR-2903.
00143.

[FMC09] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. “Integrating
cyber attacks within fault trees”. Reliability Engineering & System
Safety, 94(9):1394–1402, 2009. doi: 10.1016/j.ress.2009.02.020,
issn: 0951-8320.

[FMI+14] Francesco Flammini, Stefano Marrone, Mauro Iacono, Nicola Maz-
zocca, and Valeria Vittorini. “A multiformalism modular approach
to ERTMS/ETCS failure modelling”. International Journal of Reli-
ability, Quality and Safety Engineering, 21(1), February 2014. doi:
10.1142/S0218539314500016, issn: 0218-5393.

[FMIM05] Francesco Flammini, Nicola Mazzocca, Mauro Iacono, and Stefano
Marrone. “Using repairable fault trees for the evaluation of design
choices for critical repairable systems”. In Proceedings of the IEEE
International Symposium on High-Assurance Systems Engineering
(HASE), pages 163–172. IEEE, 2005. doi: 10.1109/HASE.2005.26,
isbn: 0-7695-2377-3.

[FS84] Hitoshi Furuta and Naruhito Shiraishi. “Fuzzy importance in fault
tree analysis”. Fuzzy Sets and Systems, 12(3):205–213, 1984. doi:
10.1016/0165-0114(84)90068-X, issn: 0165-0114.

[FT09] Marc Forster and Mario Trapp. “Fault tree analysis of software-
controlled component systems based on second-order probabilities”.
In Proceedings of the 20th IEEE International Symposium on

219

https://doi.org/10.1007/978-1-4757-2553-7
https://doi.org/10.1007/978-1-4757-2553-7
https://doi.org/10.3182/20060517-3-FR-2903.00143
https://doi.org/10.3182/20060517-3-FR-2903.00143
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1016/j.ress.2009.02.020
https://doi.org/10.1142/S0218539314500016
https://doi.org/10.1142/S0218539314500016
https://doi.org/10.1109/HASE.2005.26
https://doi.org/10.1109/HASE.2005.26
https://doi.org/10.1016/0165-0114(84)90068-X
https://doi.org/10.1016/0165-0114(84)90068-X
https://doi.org/10.1109/ISSRE.2009.22
https://doi.org/10.1109/ISSRE.2009.22

Software Reliability Engineering (ISSRE), pages 146–154. IEEE,
November 2009. doi: 10.1109/ISSRE.2009.22.

[Fus75] J. B. Fussell. “How to hand-calculate system reliability and safety
characteristics”. IEEE Transactions on Reliability, R-24(3):169–174,
August 1975. doi: 10.1109/TR.1975.5215142, issn: 0018-9529.

[GCdSeS+95] A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and
K. S. Trivedi. “The system availability estimator”. In Proceedings
of the 25th International Symposium on Fault-Tolerant Computing
(FTCS), Highlights from Twenty-Five Years, pages 182–187, June
1995. doi: 10.1109/FTCSH.1995.532632, isbn: 978-0-8186-7150-0.

[GeE99] Antonio C. F. Guimarẽes and Nelson F. F. Ebecken. “FuzzyFTA:
A fuzzy fault tree system for uncertainty analysis”. Annals of
Nuclear Energy, 26(6):523–532, April 1999. doi: 10.1016/S0306-
4549(98)00070-X, issn: 0306-4549.

[GFK02] Scott M. Goldman, Edna R. Fiedler, and Raymond E. King. “General
aviation maintenance-related accidents: A review of ten years of
ntsb data”. Technical Report DOT/FAA/AM-02/23, Civil Aerospace
Medical Institute, Federal Aviation Administration, 2002.

[GHK+07] Todd L. Graves, Michael S. Hamada, Richard Klamann, Andrew
Koehler, and Harry F. Martz. “A fully Bayesian approach for combin-
ing multi-level information in multi-state fault tree quantification”.
Reliability Engineering & System Safety, 92(10):1476–1483, 2007.
doi: 10.1016/j.ress.2006.11.001, issn: 0951-8320.

[Git92] C. W. Gits. “Design of maintenance concepts”. International Journal
of Production Economics, 24(3):217–226, March 1992. doi: 10.
1016/0925-5273(92)90133-R, issn: 0925-5273.

[GJK+17a] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias
Kuntz, and Matthias Volk. “Model-based safety analysis for vehicle
guidance systems”. In Proceedings of the International Confer-
ence on Computer Safety, Reliability, and Security (SAFECOMP),
volume 10488 of Lecture Notes on Computer Science, pages 3–19.
Springer, September 2017. doi: 10.1007/978-3-319-66266-4_1,
isbn: 978-3-319-66265-7.

[GJK+17b] Majdi Ghadhab, Sebastian Junges, Joost-Pieter Katoen, Matthias
Kuntz, and Matthias Volk. “Model-based safety analysis for vehicle
guidance systems”. In Proceedings of the International Symposium

220

https://doi.org/10.1109/TR.1975.5215142
https://doi.org/10.1109/TR.1975.5215142
https://doi.org/10.1109/FTCSH.1995.532632
https://doi.org/10.1016/S0306-4549(98)00070-X
https://doi.org/10.1016/S0306-4549(98)00070-X
https://www.faa.gov/about/initiatives/maintenance_hf/library/documents/media/human_factors_maintenance/0223.pdf
https://www.faa.gov/about/initiatives/maintenance_hf/library/documents/media/human_factors_maintenance/0223.pdf
https://www.faa.gov/about/initiatives/maintenance_hf/library/documents/media/human_factors_maintenance/0223.pdf
https://doi.org/10.1016/j.ress.2006.11.001
https://doi.org/10.1016/j.ress.2006.11.001
https://doi.org/10.1016/0925-5273(92)90133-R
https://doi.org/10.1007/978-3-319-66266-4_1
https://doi.org/10.1007/978-3-319-66266-4_1
https://doi.org/10.1007/978-3-319-66266-4
https://doi.org/10.1007/978-3-319-66266-4

on Computer Safety, Reliability, and Security (SAFECOMP), vol-
ume 10488 of Lecture Notes on Computer Science, pages 3–19.
Springer, 2017. doi: 10.1007/978-3-319-66266-4, isbn: 978-
3-319-66265-7.

[GKS+14] Dennis Guck, Joost-Pieter Katoen, Mariëlle I. A. Stoelinga, Ted
Luiten, and Judi Romijn. “Smart railroad maintenance engineering
with stochastic model checking”. In Proceedings of the 2nd Interna-
tional Conference on Railway Technology: Research, Development
and Maintenance (Railways), volume 104 of Civil-Comp Proceed-
ings, article no. 299. Civil-Comp Press, Stirlingshire, UK, April 2014.
doi: 10.4203/ccp.104.299.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
“CADP 2011: a toolbox for the construction and analysis of dis-
tributed processes”. International Journal on Software Tools for
Technology Transfer, 15(2):89–107, April 2013. doi: 10.1007/
s10009-012-0244-z, issn: 1433-2779.

[Glu07] Pawel Gluchowski. “Duration calculus for analysis of fault trees
with time dependencies”. In Proceedings of the 2nd International
Conference on Dependability of Computer Systems (DepCoS-
RELCOMEX), pages 107–114. IEEE, June 2007. doi: 10.1109/
DEPCOS-RELCOMEX.2007.19, isbn: 0-7695-2850-3.

[Gro98] EEIG ERTMS Users Group. “Ertms/etcs rams requirements specifi-
cation, chapter 2 - ram”. Technical Report 02S1266-, UIC, 1998.

[GSS15] Dennis Guck, Jip Spel, and Mariëlle I. A. Stoelinga. “DFTCalc:
Reliability centered maintenance via fault tree analysis (tool paper)”.
In Proceedings of the 17th International Conference on Formal
Engineering Methods (ICFEM), volume 9407 of Lecture Notes on
Computer Science, pages 304–311. Springer, November 2015. doi:
10.1007/978-3-319-25423-4_19.

[GTH+14] Dennis Guck, Mark Timmer, Hassan Hatefi, Enno Ruijters, and Mar-
iëlle Stoelinga. “Modelling and analysis of markov reward automata”.
In Franck Cassez and Jean-François Raskin, editors, Proceedings of
the 12th International Symposium on Automated Technology for
Verification and Analysis (ATVA), volume 8837 of Lecture Notes on
Computer Science, pages 168–185. Springer, November 2014. doi:
10.1007/978-3-319-11936-6_13, isbn: 978-3-319-11935-9.

221

https://doi.org/10.4203/ccp.104.299
https://doi.org/10.4203/ccp.104.299
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1109/DEPCOS-RELCOMEX.2007.19
https://doi.org/10.1109/DEPCOS-RELCOMEX.2007.19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-11936-6_13

[Guc17] Dennis Guck. Reliable Systems: Fault Tree Analysis via Markov Re-
ward Automata. PhD thesis, University of Twente, the Netherlands,
2017. isbn: 978-90-365-4291-3.

[HBA08] E. E. Hurdle, L. M. Bartlett, and J. D. Andrews. “System fault
diagnostics using fault tree analysis”. Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability,
221(1):43–55, 2008.

[Hei95] Philip Heidelberger. “Fast simulation of rare events in queueing and
reliability models”. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 5(1):43–85, January 1995. doi: 10.1145/
203091.203094, issn: 1049-3301.

[Her02] Holger Hermanns. Interactive Markov chains: and the quest for
quantified quality, volume 2428 of Lecture Notes on Computer
Science. Springer, 2002. doi: 10.1007/3-540-45804-2, isbn: 978-
3-540-44261-5.

[HGH11] Wei Han, Weigang Guo, and Zhiqiang Hou. “Research on the
method of dynamic fault tree analysis”. In Proceedings of the 9th
International Conference on Reliability, Maintainability and Safety
(ICRMS), pages 950–953. IEEE, IEEE, June 2011. doi: 10.1109/
ICRMS.2011.5979422, isbn: 978-1-61284-667-5.

[HHH14] Ernst Moritz Hahn, Arnd Hartmanns, and Holger Hermanns. “Reach-
ability and reward checking for stochastic timed automata”. Elec-
tronic Communications of the EASST, 70, 2014. doi: 10.14279/
tuj.eceasst.70.968, issn: 1863-2122.

[Hix68] A. F. Hixenbaugh. Fault Tree for Safety. The Boeing Company,
1968.

[HJ94] Hans Hansson and Bengt Jonsson. “A logic for reasoning about
time and reliability”. Formal Aspects of Computing, 6(5):512–535,
September 1994. doi: 10.1007/BF01211866, issn: 0934-5043.

[HL93] Jung Sik Hong and Chang Hoon Lie. “Joint reliability-importance
of two edges in an undirected network”. IEEE Transactions on
Reliability, 42:17–23, March 1993. doi: 10.1109/24.210266, issn:
0018-9529.

[HLS+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun
Zhang. “Iscasmc: A web-based probabilistic model checker”. In
Proceedings of the International Symposium on Formal Methods

222

https://doi.org/10.3990/1.9789036542913
https://doi.org/10.3990/1.9789036542913
https://doi.org/10.1145/203091.203094
https://doi.org/10.1145/203091.203094
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1109/ICRMS.2011.5979422
https://doi.org/10.1109/ICRMS.2011.5979422
https://doi.org/10.14279/tuj.eceasst.70.968
https://doi.org/10.14279/tuj.eceasst.70.968
https://doi.org/10.1007/BF01211866
https://doi.org/10.1007/BF01211866
https://doi.org/10.1109/24.210266
https://doi.org/10.1109/24.210266
https://doi.org/10.1007/978-3-319-06410-9_22

(FM), volume 8442 of Lecture Notes on Computer Science, pages
312–317. Springer, 2014. doi: 10.1007/978-3-319-06410-9_22,
isbn: 978-3-319-06409-3.

[Hoo10] Paul Hoogerkamp. Praktijkgids Risicobeoordeling Machinerichtlijn.
Nederlands Normalisatie-instituut, 2010.

[HTZ04] Hong-Zhong Huang, Xin Tong, and Ming J Zuo. “Posbist fault tree
analysis of coherent systems”. Reliability Engineering & System
Safety, 84(2):141–148, 2004. doi: 10.1016/j.ress.2003.11.002,
issn: 0951-8320.

[IEC06a] “IEC 60812: Analysis techniques for system reliability - procedure
for failure mode and effects analysis (FMEA)”, 2006.

[IEC06b] “IEC 61025: Fault tree analysis”, 2006.

[iM93] Shin ichi Minato. “Zero-suppressed BDDs for set manipulation in
combinatorial problems”. In Proceedings of the 30th ACM/IEEE
Design Automation Conference, pages 272–277. ACM New York,
June 1993. doi: 10.1145/157485.164890, isbn: 978-0-89791-577-9.

[Iso] Isograph. FaultTree+. www.isograph.com/software/
reliability-workbench/fault-tree-analysis/.

[ISO11] “ISO 26262:2011: Road vehicles – functional safety”, 2011.

[ITEM] ITEM Software. ITEM Toolkit: Fault Tree Analysis (FTA). www.
itemsoft.com/fault_tree.html.

[Jac83] Peter S. Jackson. “On the s-importance of elements and prime impli-
cants of non-coherent systems”. IEEE Transactions on Reliability,
R-32(1):21–25, April 1983. doi: 10.1109/TR.1983.5221464, issn:
0018-9529.

[JGKS16] Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, and Mariëlle
Stoelinga. “Uncovering dynamic fault trees”. In Proceedings of the
46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 299–310. IEEE, 2016. doi: 10.
1109/DSN.2016.35, isbn: 978-1-4673-8891-7.

[JT88] M. A. Johnson and M. R. Taaffe. “The denseness of phase distribu-
tions”. Technical report, School of Industrial Engineering Research
Memoranda 88-20, Purdue University, 1988.

223

https://doi.org/10.1016/j.ress.2003.11.002
https://doi.org/10.1016/j.ress.2003.11.002
https://doi.org/10.1145/157485.164890
https://doi.org/10.1145/157485.164890
www.isograph.com/software/reliability-workbench/fault-tree-analysis/
www.isograph.com/software/reliability-workbench/fault-tree-analysis/
www.itemsoft.com/fault_tree.html
www.itemsoft.com/fault_tree.html
https://doi.org/10.1109/TR.1983.5221464
https://doi.org/10.1109/TR.1983.5221464
https://doi.org/10.1109/DSN.2016.35

[Kai05] Bernhard Kaiser. “Extending the expressive power of fault trees”.
In Proceedings of the Reliability and Maintainability Symposium
(RAMS), pages 468–474. IEEE, January 2005. doi: 10.1109/RAMS.
2005.1408407, isbn: 0-7803-8824-0.

[KG04] Bernhard Kaiser and Catharina Gramlich. “State-event-fault-trees - a
safety analysis model for software controlled systems”. In Proceedings
of the International Symposium on Computer Safety, Reliability,
and Security (SAFECOMP), volume 3219 of Lecture Notes on
Computer Science, pages 195–209. Springer, 2004. doi: 10.1007/
978-3-540-30138-7_17, isbn: 978-3-540-23176-9.

[KGF07] Bernhard Kaiser, Catharina Gramlich, and Marc Förster.
“State/event fault trees – a safety analysis model for software-
controlled systems”. Reliability Engineering & System Safety,
92(11):1521–1537, November 2007. doi: 10.1016/j.ress.2006.
10.010, issn: 0951-8320.

[KH51] Herman Kahn and T. E. Harris. “Estimation of particle transmission
by random sampling”. In Monte Carlo method; Proceedings of
the Symposium held June 29, 30, and July 1 1949, volume 12 of
National Bureau of Statistics, Applied Mathematics Series, pages
27–30, 1951.

[KJG96] CE Kim, YJ Ju, and M Gens. “Multilevel fault tree analysis using
fuzzy numbers”. Computers & Operations Research, 23(7):695–703,
1996. doi: 10.1016/0305-0548(95)00070-4, issn: 0305-0548.

[Kle99] Trevor A. Kletz. Hazop & Hazan: Identifying and Assessing
Process Industry Hazards. CRC Press, fourth edition, 1999. isbn:
978-1-56032-858-2.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verifica-
tion of probabilistic real-time systems”. In Computer Aided Verifi-
cation, volume 6806 of Lecture Notes on Computer Science, pages
585–591. Springer, 2011. doi: 10.1007/978-3-642-22110-1_47,
isbn: 978-3-642-22109-5.

[Kom02] Kari Komonen. “A cost model of industrial maintenance for prof-
itability analysis and benchmarking”. International Journal of
Production Economics, 79(1):15–31, September 2002. doi: 10.
1016/S0925-5273(00)00187-0, issn: 0925-5273.

[KP14] Kailash C. Kapur and Michael Pecht. Reliability Engineering. John
Wiley & Sons, 2014. doi: 10.1002/9781118841716, isbn: 978-
1-118-14067-3.

224

https://doi.org/10.1109/RAMS.2005.1408407
https://doi.org/10.1007/978-3-540-30138-7_17
https://doi.org/10.1007/978-3-540-30138-7_17
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1016/0305-0548(95)00070-4
https://doi.org/10.1016/0305-0548(95)00070-4
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/S0925-5273(00)00187-0
https://doi.org/10.1016/S0925-5273(00)00187-0
https://doi.org/10.1002/9781118841716

[KPCS14] Barbara Kordy, Ludovic Piètre-Cambacèdés, and Patrick Schweitzer.
“Dag-based attack and defense modeling: Don’t miss the forest for
the attack trees”. Computer Science Review, 13–14:1–38, November
2014. doi: 10.1016/j.cosrev.2014.07.001, issn: 1574-0137.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. “The
epsilon transformation language”. In Proceedings of the International
Conference on Theory and Practice of Model Transformations
(ICMT), volume 5063 of Lecture Notes on Computer Science, pages
46–60. Springer, 2008. doi: 10.1007/978-3-540-69927-9_4, isbn:
978-3-540-69926-2.

[KRS15] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. “Quanti-
tative attack tree analysis via priced timed automata”. In Sriram
Sankaranarayanan and Enrico Vicario, editors, Proceedings of the
13th International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS), volume 9268 of Lecture Notes on
Computer Science, pages 156–171. Springer, September 2015. doi:
10.1007/978-3-319-22975-1_11, isbn: 978-3-31922974-4.

[KS17] Joost-Pieter Katoen and Mariëlle Stoelinga. “Boosting fault tree
analysis by formal methods”. In ModelEd, TestEd, TrustEd, vol-
ume 10500 of Lecture Notes on Computer Science, pages 368–389.
Springer, September 2017. doi: 10.1007/978-3-319-68270-9_19,
isbn: 978-3-319-68269-3.

[KSR+18] Rajesh Kumar, Stefano Schivo, Enno Ruijters, Buǧra M. Yildiz,
David Huistra, Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga.
“Effective analysis of attack trees: a model-driven approach”. In
Proceedings of the 21st International Conference on Fundamental
Approaches to Software Engineering (FASE), volume 10802 of
Lecture Notes on Computer Science, pages 56–73. Springer, 2018.
doi: 10.1007/978-3-319-89363-1_4, isbn: 978-3-319-89362-4.

[KZE09] Chakib Kara-Zaitri and Enver Ever. “A hardware accelerated semi
analytic approach for fault trees with repairable components”. In
Proceedings of the 11th International Conference on Computer
Modelling and Simulation (UKSIM), pages 146–151. IEEE, March
2009. doi: 10.1109/UKSIM.2009.83, isbn: 978-1-4244-3771-9.

[Lam10] Mariapia Lampis. Application of Bayesian Belief Networks to
System Fault Diagnostics. PhD thesis, Loughborough University,
2010.

225

https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1007/978-3-319-68270-9_19
https://doi.org/10.1007/978-3-319-89363-1_4
https://doi.org/10.1109/UKSIM.2009.83
https://doi.org/10.1109/UKSIM.2009.83

[LBTG10] Pierre L’Ecuyer, Jose H. Blanchet, Bruno Tuffin, and Peter W. Glynn.
“Asymptotic robustness of estimators in rare-event simulation”. ACM
Transactions on Modeling and Computer Simulation (TOMACS),
20(1), 2010. doi: 10.1145/1667072.1667078, issn: 1049-3301.

[LDB10] Axel Legay, Benoit Delahare, and Saddek Bensalem. “Statistical
model checking: An overview”. In Proc. 1st Int. Conf. on Runtime
Verification (RV), volume 6418 of Lecture Notes on Computer
Science, pages 122–135. Springer, November 2010. doi: 10.1007/
978-3-642-16612-9_11, isbn: 978-3-642-16611-2.

[LGTL85] Wen-Shing Lee, D. L. Grosh, Frank A. Tillman, and Chang H. Lie.
“Fault tree analysis, methods, and applications — A review”. IEEE
Transactions on Reliability, R-34(3):194–203, 1985. doi: 10.1109/
TR.1985.5222114, issn: 0018-9529.

[Li08] Deng-Feng Li. “A note on “using intuitionistic fuzzy sets for fault-
tree analysis on printed circuit board assembly””. Microelectronics
Reliability, 48(10):1741, October 2008. doi: 10.1016/j.microrel.
2008.07.059, issn: 0026-2714.

[LJ07] Lixuan Lu and Jin Jiang. “Joint failure importance for noncoherent
fault trees”. IEEE Transactions on Reliability, pages 435–443,
September 2007. doi: 10.1109/TR.2007.898574, issn: 0018-9529.

[LLLT09] Pierre L’Ecuyer, François Le Gland, Pascal Lezaud, and Bruno
Tuffin. Splitting techniques, chapter 3, pages 39–61. John Wiley &
Sons, 2009.

[LP07] Helge Langseth and Luigi Portinale. “Bayesian networks in reliabil-
ity”. Reliability Engineering & System Safety, 92(1):92–108, January
2007. doi: doi:10.1016/j.ress.2005.11.037, issn: 0951-8320.

[LRCRS] Lloyd’s Register Consulting. RiskSpectrum. www.riskspectrum.
com/en/risk.

[LSH00] W Long, Y Sato, and M Horigome. “Quantification of sequen-
tial failure logic for fault tree analysis”. Reliability Engineer-
ing & System Safety, 67(3):269–274, 2000. doi: 10.1016/S0951-
8320(99)00075-7, issn: 0951-8320.

[LT11] Pierre L’Ecuyer and Bruno Tuffin. “Approximating zero-variance
importance sampling in a reliability setting”. Annals of Operations
Research, 189(1):277–297, September 2011. doi: 10.1007/s10479-
009-0532-5, issn: 1572-9338.

226

https://doi.org/10.1145/1667072.1667078
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1109/TR.1985.5222114
https://doi.org/10.1016/j.microrel.2008.07.059
https://doi.org/10.1016/j.microrel.2008.07.059
https://doi.org/10.1109/TR.2007.898574
https://doi.org/10.1109/TR.2007.898574
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/doi:10.1016/j.ress.2005.11.037
https://doi.org/doi:10.1016/j.ress.2005.11.037
www.riskspectrum.com/en/risk
www.riskspectrum.com/en/risk
https://doi.org/10.1016/S0951-8320(99)00075-7
https://doi.org/10.1016/S0951-8320(99)00075-7
https://doi.org/10.1007/s10479-009-0532-5
https://doi.org/10.1007/s10479-009-0532-5

[LW97] Ching-Torng Lin and Mao-Jiun J Wang. “Hybrid fault tree
analysis using fuzzy sets”. Reliability Engineering & System
Safety, 58(3):205–213, December 1997. doi: 10.1016/S0951-
8320(97)00072-0, issn: 0951-8320.

[LXL+10] Dong Liu, Lei Xiong, Zhi Li, Peng Wang, and Honglin Zhang. “The
simplification of cut sequence set analysis for dynamic systems”.
In Proceedings of the 2nd International Conference on Computer
and Automation Engineering (ICCAE), volume 3, pages 140–144.
IEEE, February 2010. doi: 10.1109/ICCAE.2010.5451831, isbn:
978-1-4244-5569-0.

[LXZ+07] Dong Liu, Weiyan Xing, Chunyuan Zhang, Rui Li, and Haiyan
Li. “Cut sequence set generation for fault tree analysis”. In Em-
bedded Software and Systems, volume 4523 of Lecture Notes on
Computer Science, pages 592–603. Springer, 2007. doi: 10.1007/
978-3-540-72685-2_55, isbn: 978-3-540-72684-5.

[LY77] Howard E. Lambert and George Yadigaroglu. “Fault trees for diag-
nosis of system fault conditions”. Nuclear Science and Engineering,
62:20–34, 1977. doi: 10.13182/NSE77-A26936.

[LYZL09] Xiaofeng Liang, Hong Yi, Yufang Zhang, and Dan Li. “A numerical
simulation approach for reliability analysis of fault-tolerant repairable
system”. In Proceedings of the 8th International Conference on
Reliability, Maintainability and Safety (ICRMS), pages 191–196.
IEEE, July 2009. doi: 10.1109/ICRMS.2009.5270210, isbn: 978-
1-4244-4903-3.

[LZX+07] Dong Liu, Chunyuan Zhang, Weiyan Xing, Rui Li, and Haiyan
Li. “Quantification of cut sequence set for fault tree analysis”. In
Proceedings of the International Conference on High Performance
Computing and Communications, volume 4782 of Lecture Notes on
Computer Science, pages 755–765. Springer, 2007. doi: 10.1007/
978-3-540-75444-2_70, isbn: 978-3-540-75443-5.

[MAV+13] Y. A. Mahmood, A. Ahmadi, A. K. Verma, A. Srividya, and U. Ku-
mar. “Fuzzy fault tree analysis: a review of concept and appli-
cation”. International Journal of System Assurance Engineering
and Management, 4(1):19–32, March 2013. doi: 10.1007/s13198-
013-0145-x, issn: 0975-6809.

[May60] Raymond R. Mayer. “Problems in the application of replacement
theory”. Management Science, 6(3):303–310, 1960. doi: 10.1287/
mnsc.6.3.303, issn: 0025-1909.

227

https://doi.org/10.1016/S0951-8320(97)00072-0
https://doi.org/10.1016/S0951-8320(97)00072-0
https://doi.org/10.1109/ICCAE.2010.5451831
https://doi.org/10.1109/ICCAE.2010.5451831
https://doi.org/10.1007/978-3-540-72685-2_55
https://doi.org/10.13182/NSE77-A26936
https://doi.org/10.13182/NSE77-A26936
https://doi.org/10.1109/ICRMS.2009.5270210
https://doi.org/10.1109/ICRMS.2009.5270210
https://doi.org/10.1109/ICRMS.2009.5270210
https://doi.org/10.1007/978-3-540-75444-2_70
https://doi.org/10.1007/s13198-013-0145-x
https://doi.org/10.1007/s13198-013-0145-x
https://doi.org/10.1287/mnsc.6.3.303
https://doi.org/10.1287/mnsc.6.3.303

[MCC+14] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and N. Trapani.
“Conception of repairable dynamic fault trees and resolution by
the use of raatss, a matlab®toolbox based on the ats formalism”.
Reliability Engineering & System Safety, 121:250–262, January 2014.
doi: 10.1016/j.ress.2013.09.002, issn: 0951-8320.

[Mer10] Guillaume Merle. Algebraic modelling of Dynamic Fault Trees,
contribution to qualitative and quantitative analysis. PhD thesis,
École normale supérieure de Cachan, 2010. https://tel.archives-
ouvertes.fr/tel-00502012v1.

[MKK09] Mohammad Modarres, Mark Kaminskiy, and Vasiliy Krivtsov. Reli-
ability Engineering and Risk Analysis: A Practical Guide. CRC
Press, third edition, 2009. isbn: 978-1-4987-4587-1.

[MNTL13] Zuoyu Miao, Ru Niu, Tao Tang, and Jieyu Liu. “A new genera-
tion algorithm of fault tree minimal cut sets and its application
in CBTC system”. In Proceedings of the International Confer-
ence on Intelligent Rail Transportation (ICIRT), pages 221–226.
IEEE, August 2013. doi: 10.1109/ICIRT.2013.6696297, isbn:
978-1-4673-5278-9.

[Mo14] Yuchang Mo. “A multiple-valued decision-diagram-based approach
to solve dynamic fault trees”. IEEE Transactions on Reliability,
63(1):81–93, March 2014. doi: 10.1109/TR.2014.2299674, issn:
0018-9529.

[Mob02] R. Keith Mobley. An introduction to predictive maintenance. Else-
vier, 2002. isbn: 978-0-08-047869-2.

[Mou97] John Moubray. Reliability centered maintenance. Industrial Press,
1997. isbn: 978-0-8311-3146-3.

[MPB05a] Stefania Montani, Luigi Portinale, and Andrea Bobbio. “Dynamic
Bayesian networks for modeling advanced fault tree features in
dependability analysis”. In Proceedings of the European Safety and
Reliability Conference, pages 1415–1422. CRC Press, 2005. isbn:
978-0-415-38340-0.

[MPB+05b] Stefania Montani, Luigi Portinale, Andrea Bobbio, M. Varesio, and
Daniele Codetta-Raiteri. “DBNet, a tool to convert dynamic fault
trees into dynamic Bayesian networks”. Technical report, Dip. di
Informatica, Univ. del Piemonte Orientale, August 2005.

228

https://doi.org/10.1016/j.ress.2013.09.002
https://doi.org/10.1016/j.ress.2013.09.002
https://tel.archives-ouvertes.fr/tel-00502012v1
https://tel.archives-ouvertes.fr/tel-00502012v1
https://doi.org/10.1109/ICIRT.2013.6696297
https://doi.org/10.1109/ICIRT.2013.6696297
https://doi.org/10.1109/ICIRT.2013.6696297
https://doi.org/10.1109/TR.2014.2299674
https://doi.org/10.1109/TR.2014.2299674
http://www.researchgate.net/publication/229458364_Dynamic_bayesian_networks_for_modeling_advanced_fault_tree_features_in_dependability_analysis
http://www.researchgate.net/publication/229458364_Dynamic_bayesian_networks_for_modeling_advanced_fault_tree_features_in_dependability_analysis
http://www.researchgate.net/publication/229458364_Dynamic_bayesian_networks_for_modeling_advanced_fault_tree_features_in_dependability_analysis

[MPBCR08] Stefania Montani, Luigi Portinale, Andrea Bobbio, and Daniele
Codetta-Raiteri. “Radyban: A tool for reliability analysis of dynamic
fault trees through conversion into dynamic Bayesian networks”.
Reliability Engineering & System Safety, 93(7):922–932, 2008. doi:
10.1016/j.ress.2007.03.013, issn: 0951-8320.

[MR07] Guillaume Merle and Jean-Marc Roussel. “Algebraic modelling of
fault trees with priority AND gates”. In Proceedings of the 1st IFAC
Workshop on Dependable Control of Discrete Systems (DCDS),
volume 40(6) of IFAC Proceedings Volumes, pages 31–36. Elsevier,
June 2007.

[MRL11] Guillaume Merle, Jean-Marc Roussel, and Jean-Jaques Lesage. “Dy-
namic fault tree analysis based on the structure function”. In Pro-
ceedings of the Reliability and Maintainability Symposium (RAMS).
IEEE, January 2011. doi: 10.1109/RAMS.2011.5754452, isbn:
978-1-4244-8857-5.

[MRLB10] Guillaume Merle, Jean-Marc Roussel, Jean-Jaques Lesage, and An-
drea Bobbio. “Probabilistic algebraic analysis of fault trees with
priority dynamic gates and repeated events”. IEEE Transactions
on Reliability, 59(1):250–261, March 2010. doi: 10.1109/TR.2009.
2035793, issn: 0018-9529.

[MS95] Krishna B. Misra and K. P. Soman. “Multi state fault tree analysis
using fuzzy probability vectors and resolution identity”. Reliability
and Safety Analyses under Fuzziness, 4:113–125, 1995. doi: 10.
1007/978-3-7908-1898-7_7, isbn: 978-3-662-12913-5.

[MT95] Manish Malhotra and Kishor S. Trivedi. “Dependability modeling
using Petri-nets”. IEEE Transactions on Reliability, 44(3):428–440,
September 1995. doi: 10.1109/24.406578, issn: 0018-9529.

[MZ00] Marzio Marseguerra and Enrico Zio. “Optimizing maintenance
and repair policies via a combination of genetic algorithms and
monte carlo simulation”. Reliability Engineering & System Safety,
68(1):69–83, April 2000. doi: 10.1016/S0951-8320(00)00007-7,
issn: 0951-8320.

[ND08] Robin P. Nicolai and Rommert Dekker. “Optimal maintenance
of multi-component systems: A review”. Complex System Main-
tenance Handbook, pages 263–286, 2008. doi: 10.1007/978-
1-84800-011-7_11, isbn: 978-1-84800-010-0.

229

https://doi.org/10.1016/j.ress.2007.03.013
https://doi.org/10.1016/j.ress.2007.03.013
https://doi.org/10.1109/RAMS.2011.5754452
https://doi.org/10.1109/RAMS.2011.5754452
https://doi.org/10.1109/TR.2009.2035793
https://doi.org/10.1109/TR.2009.2035793
https://doi.org/10.1007/978-3-7908-1898-7_7
https://doi.org/10.1007/978-3-7908-1898-7_7
https://doi.org/10.1109/24.406578
https://doi.org/10.1109/24.406578
https://doi.org/10.1016/S0951-8320(00)00007-7
https://doi.org/10.1016/S0951-8320(00)00007-7
https://doi.org/10.1016/S0951-8320(00)00007-7
https://doi.org/10.1007/978-1-84800-011-7_11
https://doi.org/10.1007/978-1-84800-011-7_11

[Ned14] NedTrain. Naslagwerk onderhoud & storingen VIRM 2/3, 2014.
Internal document.

[NTX13] Jun Ni, Wencheng Tang, and Yan Xing. “A simple algebra for fault
tree analysis of static and dynamic systems”. IEEE Transactions
on Reliability, 62:846–861, December 2013. doi: 10.1109/TR.2013.
2285035, issn: 0018-9529.

[OD00] Yong Ou and Joanne Bechta Dugan. “Sensitivity analysis of modular
dynamic fault trees”. In Proceedings of the IEEEInternational
Computer Performance and Dependability Symposium (IPDS),
pages 35–43. IEEE, March 2000. doi: 10.1109/IPDS.2000.839462,
isbn: 978-0-7695-0553-4.

[Ope] OpenFTA. www.openfta.com/.

[OSH94] Occupational Safety and Health Administration, U.S. Department
of Labor. OSHA 3133: Process Safety Management Guidelines for
Compliance, 1994.

[PA13] Darren Prescott and John Andrews. “Modelling maintenance in
railway infrastructure management”. In Proceedings of the Reliability
and Maintainability Symposium (RAMS). IEEE, 2013. doi: 10.
1109/RAMS.2013.6517678, isbn: 978-1-4673-4709-9.

[Pal02] Girish Keshav Palshikar. “Temporal fault trees”. Information and
Software Technology, 44(3):137–150, 2002. doi: 10.1016/S0950-
5849(01)00223-3, issn: 0950-5849.

[PBCRM07] Luigi Portinale, Andrea Bobbio, Daniele Codetta-Raiteri, and Stefa-
nia Montani. “Compiling dynamic fault trees into dynamic Bayesian
nets for reliability analysis: the RADYBAN tool”. In Proceedings
of the Applications Workshop of the 5th Uncertainty in Artificial
Intelligence Conference (UAI-AW), pages 47–54, 2007.

[PCRM10] Luigi Portinale, Daniele Codetta-Raiteri, and Stefania Montani.
“Supporting reliability engineers in exploiting the power of dynamic
Bayesian networks”. International Journal of Approximate Reason-
ing, 51(2):179–195, January 2010. doi: 10.1016/j.ijar.2009.05.
009, issn: 0888-613X.

[PD96] Laura L. Pullum and Joanne Bechta Dugan. “Fault tree models for
the analysis of complex computer-based systems”. In Proceedings
of the Reliability and Maintainability Symposium (RAMS), pages
200–207. IEEE, January 1996. doi: 10.1109/RAMS.1996.500663,
isbn: 978-0-7803-3112-9.

230

https://doi.org/10.1109/TR.2013.2285035
https://doi.org/10.1109/TR.2013.2285035
https://doi.org/10.1109/IPDS.2000.839462
https://doi.org/10.1109/IPDS.2000.839462
www.openfta.com/
https://doi.org/10.1109/RAMS.2013.6517678
https://doi.org/10.1109/RAMS.2013.6517678
https://doi.org/10.1016/S0950-5849(01)00223-3
http://ceur-ws.org/Vol-268/paper6.pdf
http://ceur-ws.org/Vol-268/paper6.pdf
https://doi.org/10.1016/j.ijar.2009.05.009
https://doi.org/10.1016/j.ijar.2009.05.009
https://doi.org/10.1109/RAMS.1996.500663
https://doi.org/10.1109/RAMS.1996.500663

[PDAC05] Petar Popic, Dejan Desovski, Walid Abdelmoez, and Bojan Cu-
kic. “Error propagation in the reliability analysis of component
based systems”. In Proceedings of the 16th IEEE International
Symposium on Software Reliability Engineering (ISSRE), pages
52–62. IEEE, November 2005. doi: 10.1109/ISSRE.2005.18, isbn:
978-0-7695-2482-5.

[PG92] L. M. Pintelon and L. F. Gelders. “Maintenance management decision
making”. European Journal of Operational Research, 58:301–317,
May 1992. doi: 10.1016/0377-2217(92)90062-E, issn: 0377-2217.

[PP94] Lavon B. Page and Jo Ellen Perry. “Standard deviation as an
alternative to fuzziness in fault tree models”. IEEE Transactions
on Reliability, 43(3):402–407, September 1994. doi: 10.1109/24.
326434, issn: 0018-9529.

[Pro15] ProRail. “Netverklaring 2016, Gemengde net [in Dutch]”, 2015.

[PSC75] Pradip K. Pande, Michael E. Spector, and Purnendu Chatterjee.
“Computerized fault tree analysis: TREEL and MICSUP”. Technical
report, Operation Research Centre, University of California, Berkeley,
1975.

[PTC] PTC. Windchill FTA. www.ptc.com/product/relex/fault-tree.

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification
of concurrent systems in cesar”. In Proceedings of the International
Symposium on Programming, volume 137 of Lecture Notes on
Computer Science, pages 337–351. Springer, 1982. doi: 10.1007/
3-540-11494-7_22, isbn: 978-3-540-11494-9.

[RA06] R. Remenyte and J. D. Andrews. “A simple component connection
approach for fault tree conversion to binary decision diagram”. In
Proceedings of the 1st International Conference on Availability,
Reliability and Security (ARES), pages 449–456, April 2006. doi:
10.1109/ARES.2006.17, isbn: 978-0-7695-2567-9.

[Rau93] Antoine B. Rauzy. “New algorithms for fault tree analysis”. Relia-
bility Engineering & System Safety, 40(3):203–211, 1993. doi: 10.
1016/0951-8320(93)90060-C, issn: 0951-8320.

[Rau08] Antoine Rauzy. Binary Decision Diagrams for Reliability Studies,
pages 381–396. Springer London, 2008.

231

https://doi.org/10.1109/ISSRE.2005.18
https://doi.org/10.1109/ISSRE.2005.18
https://doi.org/10.1016/0377-2217(92)90062-E
https://doi.org/10.1016/0377-2217(92)90062-E
https://doi.org/10.1109/24.326434
https://doi.org/10.1109/24.326434
www.ptc.com/product/relex/fault-tree
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1007/3-540-11494-7_22
https://doi.org/10.1109/ARES.2006.17
https://doi.org/10.1109/ARES.2006.17
https://doi.org/10.1016/0951-8320(93)90060-C
https://doi.org/10.1007/978-1-84800-131-2_25

[Rau11] Antoine B. Rauzy. “Sequence algebra, sequence decision diagrams
and dynamic fault trees”. Reliability Engineering & System Safety,
96(7):785–792, 2011. doi: 10.1016/j.ress.2011.02.005, issn:
0951-8320.

[RBM91] Don E. Ross, Kenneth M. Butler, and M. Ray Mercer. “Exact
ordered binary decision diagram size when representing classes of
symmetric functions”. Journal of Electronic Testing, 2(3):243–259,
August 1991. doi: 10.1007/BF00135441, issn: 0923-8174.

[RD97] Antoine Rauzy and Yves Dutuit. “Exact and truncated computations
of prime implicants of coherent and non-coherent fault trees within
Aralia”. Reliability Engineering & System Safety, 58(2):127–144,
November 1997. doi: 10.1016/S0951-8320(97)00034-3, issn:
0951-8320.

[RdBSH15] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner Scheinhardt, and
Boudewijn Haverkort. “On hypothesis testing for statistical model
checking”. International Journal on Software Tools for Technol-
ogy Transfer, 17(4):377–395, August 2015. doi: 10.1007/s10009-
014-0350-1, issn: 1433-2779.

[RdBSJ18] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner R. W. Scheinhardt,
and Sandeep Juneja. “Path-ZVA: general, efficient and automated
importance sampling for highly reliable markovian systems”. ACM
Transactions on Modeling and Computer Simulation, 2018. Accepted
for publication.

[Rei13] Daniël Reijsbergen. Efficient simulation techniques for stochas-
tic model checking. PhD thesis, University of Twente, Enschede,
December 2013. isbn: 978-90-365-3586-1.

[Rel] ReliaSoft. BlockSim. www.reliasoft.com/BlockSim/index.html.

[RG12] Dev G. Raheja and Louis J. Gullo, editors. Design for Reliability.
John Wiley & Sons, 2012.

[RGD10] Duan Rongxing, Wan Guochun, and Dong Decun. “A new assessment
method for system reliability based on dynamic fault tree”. In Pro-
ceedings of the International Conference on Intelligent Computation
Technology and Automation (ICICTA), pages 219–222. IEEE, May
2010. doi: 10.1109/ICICTA.2010.237, isbn: 978-1-4244-7279-6.

[RGD+16] Enno Ruijters, Dennis Guck, Peter Drolenga, Margot Peters, and
Mariëlle Stoelinga. “Maintenance analysis and optimization via statis-
tical model checking: Evaluation of a train’s pneumatic compressor”.

232

https://doi.org/10.1016/j.ress.2011.02.005
https://doi.org/10.1016/j.ress.2011.02.005
https://doi.org/10.1007/BF00135441
https://doi.org/10.1007/BF00135441
https://doi.org/10.1007/BF00135441
https://doi.org/10.1016/S0951-8320(97)00034-3
https://doi.org/10.1016/S0951-8320(97)00034-3
https://doi.org/10.1016/S0951-8320(97)00034-3
https://doi.org/10.1007/s10009-014-0350-1
https://doi.org/10.1007/s10009-014-0350-1
https://doi.org/10.3990/1.9789036535861
https://doi.org/10.3990/1.9789036535861
www.reliasoft.com/BlockSim/index.html
https://doi.org/10.1109/ICICTA.2010.237
https://doi.org/10.1109/ICICTA.2010.237
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22

In Proceedings of the 13th International Conference on Quantitative
Evaluation of SysTems (QEST), volume 9826 of Lecture Notes on
Computer Science, pages 331–347. Springer, August 2016. doi: 10.
1007/978-3-319-43425-4_22, isbn: 978-3-319-43424-7.

[RGDS16] Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga.
“Fault maintenance trees: reliability contered maintenance via sta-
tistical model checking”. In Proceedings of the Reliability and
Maintainability Symposium (RAMS). IEEE, January 2016. doi:
10.1109/RAMS.2016.7447986, isbn: 978-1-5090-0248-1.

[RGvNS16] Enno Ruijters, Dennis Guck, Martijn van Noort, and Mariëlle
Stoelinga. “Reliability-centered maintenance of the electrically
insulated railway joint via fault tree analysis: A practical expe-
rience report”. In Proceedings of the 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pages 662–669, 2016. doi: 10.1109/DSN.2016.67, isbn:
978-1-4673-8891-7.

[RH04] Marvin Rausand and Arnljot Hoylan. System Reliability Theory.
Models, Statistical Methods, and Applications. Wiley series in
probability and statistics. John Wiley & Sons, 2004. isbn: 978-
0-471-47133-2.

[Rij12] Rijkswaterstaat. Leidraad RAMS—sturen op prestaties van syste-
men. Ministerie van Verkeer en Waterstaat, 2012. In Dutch.

[RJ10] Amir Rajabzadeh and Mohammed S. Jahangiry. “Hardware-based
reliability tree (HRT) for fault tree analysis”. In Proceedings of the
15th CSI International Symposium on Computer Architecture and
Digital Systems (CADS), pages 171–172. IEEE, September 2010.
doi: 10.1109/CADS.2010.5623587, isbn: 978-1-4244-6267-4.

[RJB04] James Rumbaugh, Ivar Jabobson, and Grady Booch. The Unified
Modeling Language Referance manual. Pearson Higher Education,
second edition, 2004. isbn: 978-0-321-71895-2.

[RK11] Yi Ren and Leixing Kong. “Fuzzy multi-state fault tree analysis
based on fuzzy expert system”. In Proceedings of the 9th Inter-
national Conference on Reliability, Maintainability and Safety
(ICRMS), pages 920–925. IEEE, June 2011. doi: 10.1109/ICRMS.
2011.5979415, isbn: 978-1-61284-667-5.

233

https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047147133X.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047147133X.html
https://doi.org/10.1109/CADS.2010.5623587
https://doi.org/10.1109/CADS.2010.5623587
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000390971
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000390971
https://doi.org/10.1109/ICRMS.2011.5979415
https://doi.org/10.1109/ICRMS.2011.5979415

[RL13] Michael Roth and Peter Liggesmeyer. “Qualitative analysis of
state/event fault trees for supporting the certification process of
software-intensive systems”. In Proceedings of the IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops
(ISSREW), pages 353–358, November 2013. doi: 10.1109/ISSREW.
2013.6688920, isbn: 978-1-4799-2553-7.

[RPA08] R. Remenyte-Prescott and J.D. Andrews. “An enhanced component
connection method for conversion of fault trees to binary decision dia-
grams”. Reliability Engineering & System Safety, 93(10):1543–1550,
October 2008. doi: 10.1016/j.ress.2007.09.001, issn: 0951-
8320.

[RRdBS17] Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mar-
iëlle Stoelinga. “Rare event simulation for dynamic fault trees”. In
Proceedings of the International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), volume 10488 of Lecture
Notes on Computer Science, pages 20–35. Springer, September 2017.
doi: 10.1007/978-3-319-66266-4_2, isbn: 978-3-319-66265-7.

[RS15] Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey
of the state-of-the-art in modeling, analysis and tools”. Computer
Science Review, 15–16:29–62, 2015. doi: 10.1016/j.cosrev.2015.
03.001, issn: 1574-0137.

[RS16] Enno Ruijters and Mariëlle Stoelinga. “Better railway engineering
through statistical model checking”. In Proceedings of the 7th Inter-
national Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA), volume 9952 of Lecture Notes
on Computer Science, pages 151–165. Springer, October 2016. doi:
10.1007/978-3-319-47166-2_10, isbn: 978-3-319-47165-5.

[RSSR17] Enno Ruijters, Stefano Schivo, Mariëlle Stoelinga, and Arend
Rensink. “Uniform analysis of fault trees through model trans-
formations”. In Proceedings of the Reliability and Maintainability
Symposium (RAMS). IEEE, January 2017. doi: 10.1109/RAM.
2017.7889759, isbn: 978-1-5090-5284-4.

[Rus85] Ali M. Rushdi. “Uncertainty analysis of fault-tree outputs”. IEEE
Transactions on Reliability, R-34(5):458–462, December 1985. doi:
10.1109/TR.1985.5222232, issn: 0018-9529.

[SA96] Roslyn M. Sinnamon and John D. Andrews. “Fault tree analysis
and binary decision diagrams”. In Proceedings of the Reliability and

234

https://doi.org/10.1109/ISSREW.2013.6688920
https://doi.org/10.1109/ISSREW.2013.6688920
https://doi.org/10.1109/ISSREW.2013.6688920
https://doi.org/10.1016/j.ress.2007.09.001
https://doi.org/10.1016/j.ress.2007.09.001
https://doi.org/10.1016/j.ress.2007.09.001
https://doi.org/10.1007/978-3-319-66266-4_2
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1109/RAM.2017.7889759
https://doi.org/10.1109/RAM.2017.7889759
https://doi.org/10.1109/TR.1985.5222232
https://doi.org/10.1109/RAMS.1996.500665
https://doi.org/10.1109/RAMS.1996.500665

Maintainability Symposium (RAMS), pages 215–222. IEEE, 1996.
doi: 10.1109/RAMS.1996.500665, isbn: 978-0-7803-3112-9.

[SBR96] P. V. Suresh, A. K. Babar, and V. Venkat Raj. “Uncertainty in
fault tree analysis: A fuzzy approach”. Fuzzy Sets and Systems,
83(2):135–141, 1996. doi: 10.1016/0165-0114(95)00386-X, issn:
0165-0114.

[Sca97] Philip A. Scarf. “On the application of mathematical models in main-
tenance”. European Journal of Operational Research, 99(3):493–506,
June 1997. doi: 10.1016/S0377-2217(96)00316-5, issn: 0377-
2217.

[SCC06] Ming-Hung Shu, Ching-Hsue Cheng, and Jing-Rong Chang. “Using
intuitionistic fuzzy sets for fault-tree analysis on printed circuit board
assembly”. Microelectronics Reliability, 46(12):2139–2148, 2006. doi:
10.1016/j.microrel.2006.01.007, issn: 0026-2714.

[SCD+03] William H. Sanders, Tod Courtney, Danial D. Deavours, David
Daly, Salem Derisavi, and Vinh Lam. “Multi-formalism and multi-
solution-method modeling frameworks: The Möbius approach”. In
Proceedings of the Symposium on Performance Evaluation - Stories
and Perspectives, pages 241–256, Vienna, Austria, December 2003.

[Sch90] Winfrid G. Schneeweiss. “SyRePa’89–a package of programs for
systems reliability evaluations”. Technical report, Informatik-Rep.
91, Fern Universität, 1990.

[Sch98] Winfrid G. Schneeweiss. “On the polynomial form of boolean func-
tions: Derivations and applications”. IEEE Transactions on Com-
puters, 47:217–221, February 1998. doi: 10.1109/12.663768, issn:
0018-9340.

[SDC99] Kevin J. Sullivan, Joanne Bechta Dugan, and David Coppit. “The
galileo fault tree analysis tool”. In Proceedings of the Annual In-
ternational Symposium on Fault-Tolerant Computing (FTCS).
IEEE, June 1999. doi: 10.1109/FTCS.1999.781056, isbn: 978-
0-7695-0213-7.

[SHK17] Mariëlle Stoelinga, Djoerd Hiemstra, and Joost-Pieter Katoen. “Se-
quoia: Smart maintenance optimization”. http://fmt.cs.utwente.
nl/research/projects/SEQUOIA/, 2017.

[Sin90] D. Singer. “A fuzzy set approach to fault tree and reliability analysis”.
Fuzzy Sets and Systems, 34(2):145–155, 1990. doi: 10.1016/0165-
0114(90)90154-X, issn: 0165-0114.

235

https://doi.org/10.1016/0165-0114(95)00386-X
https://doi.org/10.1016/0165-0114(95)00386-X
https://doi.org/10.1016/S0377-2217(96)00316-5
https://doi.org/10.1016/S0377-2217(96)00316-5
https://doi.org/10.1016/j.microrel.2006.01.007
https://doi.org/10.1016/j.microrel.2006.01.007
https://doi.org/10.1016/j.microrel.2006.01.007
http://www.perform.illinois.edu/Papers/USAN_papers/03SAN01.pdf
http://www.perform.illinois.edu/Papers/USAN_papers/03SAN01.pdf
https://doi.org/10.1109/12.663768
https://doi.org/10.1109/12.663768
https://doi.org/10.1109/FTCS.1999.781056
https://doi.org/10.1109/FTCS.1999.781056
http://fmt.cs.utwente.nl/research/projects/SEQUOIA/
http://fmt.cs.utwente.nl/research/projects/SEQUOIA/
https://doi.org/10.1016/0165-0114(90)90154-X

[Sin96] Roslyn Mary Sinnamon. Binary Decision Diagrams for Fault Tree
Analysis. PhD thesis, Loughborough University, 1996.

[SM93] K. P. Soman and Krishna B. Misra. “Fuzzy fault tree analysis
using resolution identity and extension principle”. Journal of Fuzzy
Mathematics, 1:193–212, 1993.

[Soc17] Society of Automotive Engineers. AS5506C: Architecture Analysis
& Design Language, 2017.

[SPN18] Stichting voor de Technische Wetenschappen, ProRail, and Neder-
landse Organisatie voor Wetenschappelijk Onderzoek. “Explorail -
english summary”. http://explorail.verdus.nl/1334, 2018.

[Ste86] Karl Stecher. “Evaluation of large fault-trees with repeated events
using an efficient bottom-up algorithm”. IEEE Transactions on
Reliability, 35:51–58, April 1986. doi: 10.1109/TR.1986.4335344,
issn: 0018-9529.

[STR02] Gerhard Schellhorn, Andreas Thums, and Wolfgang Reif. “Formal
fault tree semantics”. In Proceedings of the 6th World Conference
on Integrated Design and Process Technology, 2002.

[SVD+02] Michael Stamatelatos, William Vesely, Joanne Bechta Dugan, Joseph
Fragola, Joseph Minarick, and Jan Railsback. Fault Tree Handbook
with Aerospace Applications. Office of safety and mission assurance
NASA headquarters, 2002.

[SWK95a] Dragan A. Savic, Godfrey A. Walters, and Jezdimir Knezevic. “Op-
timal opportunistic maintenance policy using genetic algorithms
1: formulation”. Journal of Quality in Maintenance Engineering,
1(2):34–49, 1995. doi: 10.1108/13552519510089574, issn: 1355-
2511.

[SWK95b] Dragan A. Savic, Godfrey A. Walters, and Jezdimir Knezevic. “Op-
timal opportunistic maintenance policy using genetic algorithms
2: analysis”. Journal of Quality in Maintenance Engineering,
1(3):25–34, 1995. doi: 10.1108/13552519510096378, issn: 1355-
2511.

[SyD11] Anil Sharma, G. S. yadava, and S. G. Deshmukh. “A literature review
and future perspectives on maintenance optimization”. Journal of
Quality in Maintenance Engineering, 17(1):5–25, 2011. doi: 10.
1108/13552511111116222, issn: 1355-2511.

236

http://explorail.verdus.nl/1334
https://doi.org/10.1109/TR.1986.4335344
https://doi.org/10.1109/TR.1986.4335344
https://doi.org/10.1108/13552519510089574
https://doi.org/10.1108/13552519510089574
https://doi.org/10.1108/13552519510089574
https://doi.org/10.1108/13552519510096378
https://doi.org/10.1108/13552519510096378
https://doi.org/10.1108/13552519510096378
https://doi.org/10.1108/13552511111116222
https://doi.org/10.1108/13552511111116222

[SYR+17] Stefano Schivo, Buğra M. Yildiz, Enno Ruijters, Christopher Gerk-
ing, Rajesh Kumar, Stefan Dziwok, Arend Rensink, and Mar-
iëlle Stoelinga. “How to efficiently build a front-end tool for UP-
PAAL: A model-driven approach”. In Proceedings of the Sympo-
sium on Dependable Software Engineering: Theories, Tools and
Appliations (SETTA), volume 10606 of Lecture Notes on Com-
puter Science, pages 319–336. Springer, 2017. doi: 10.1007/978-
3-319-69483-2_19, isbn: 978-3-319-69482-5.

[TD04] Zhihua Tang and Joanne Bechta Dugan. “Minimal cut set/sequence
generation for dynamic fault trees”. In Proceedings of the Reli-
ability and Maintainability Symposium (RAMS), pages 207–213.
IEEE, January 2004. doi: 10.1109/RAMS.2004.1285449, isbn:
978-0-7803-8215-2.

[TFLT83] Hideo Tanaka, LT Fan, FS Lai, and K Toguchi. “Fault-tree anal-
ysis by fuzzy probability”. IEEE Transactions on Reliability,
32(5):453–457, 1983. doi: 10.1109/TR.1983.5221727, issn: 0018-
9529.

[Tin10] Tiedo Tinga. “Application of physical failure models to enable usage
and load based maintenance”. Reliability Engineering & System
Safety, 95(10):1061–1075, October 2010. doi: 10.1016/j.ress.
2010.04.015, issn: 0951-8320.

[TJ13] Tiedo Tinga and Rene Janssen. “The interplay between deployment
and optimal maintenance intervals for complex multi-component
systems”. Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, 227(3):227–240, June 2013.
doi: 10.1177/1748006X13480743, issn: 1748-006X.

[TRSS00] D. W. Twigg, A. V. Ramesh, U. R. Sandadi, and T. C. Sharma.
“Modeling mutually exclusive events in fault trees”. In Proceedings
of the Reliability and Maintainability Symposium (RAMS), pages
8–13. IEEE, January 2000. doi: 10.1109/RAMS.2000.816276, isbn:
0-7803-5848-1.

[U.S49] U.S. Department of Defense. Procedures for performing a failure
mode, effects and criticality analysis (MIL-P-1629), 1949.

[U.S90] U.S. Department of Defense. Procedures for performing a failure
mode, effects and criticality analysis (MIL-STD-1629A), 1990.

[UT12] University of Twente. “Arrangeer: Smart railroad maintenance engi-
neering with stochastic model checking”. http://fmt.cs.utwente.
nl/research/projects/ArRangeer/, 2012.

237

https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1109/RAMS.2004.1285449
https://doi.org/10.1109/RAMS.2004.1285449
https://doi.org/10.1109/TR.1983.5221727
https://doi.org/10.1109/TR.1983.5221727
https://doi.org/10.1016/j.ress.2010.04.015
https://doi.org/10.1016/j.ress.2010.04.015
https://doi.org/10.1177/1748006X13480743
https://doi.org/10.1177/1748006X13480743
https://doi.org/10.1177/1748006X13480743
https://doi.org/10.1109/RAMS.2000.816276
http://fmt.cs.utwente.nl/research/projects/ArRangeer/
http://fmt.cs.utwente.nl/research/projects/ArRangeer/

[Van91] S. G. Vanneste. “A markov model for opportunity maintenance”.
Technical Report FEW 476, Faculteit der Economische Wetenschap-
pen, Tilburg University, 1991.

[Vau02] Jussi K. Vaurio. “Treatment of general dependencies in system
fault-tree and risk analysis”. IEEE Transactions on Reliability,
51:278–287, September 2002. doi: 10.1109/TR.2002.801848, issn:
0018-9529.

[Ves70] W. E. Vesely. “A time-dependent methodology for fault tree eval-
uation”. Nuclear Engineering and Design, 13(2):337–360, August
1970. doi: 10.1016/0029-5493(70)90167-6.

[VG06] Erin Vadala and Christen Graham. “Downtime costs auto
industry $22k/minute - survey”. https://news.thomasnet.com/
companystory/downtime-costs-auto-industry-22k-minute-
survey-481017, 2006.

[VGRH81] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault
Tree Handbook. Office of Nuclear Regulatory Reasearch, U.S. Nuclear
Regulatory Commision, 1981.

[VJK18] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. “Fast
dynamic fault tree analysis by model checking techniques”. IEEE
Transactions on Industrial Informatics, 14(1):370–379, January
2018. doi: 10.1109/TII.2017.2710316, issn: 1551-3202.

[VN70] W. E. Vesely and R. E. Narum. “PREP and KITT: computer codes
for the automatic evaluation of a fault tree”. Technical report, Idaho
Nuclear Corp., Idaho Falls, 1970.

[WBP07] Martin Walker, Leonardo Bottaci, and Yiannis Papadopoulos. “Com-
positional temporal fault tree analysis”. In Proceedings of the Inter-
national Symposium on Computer Safety, Reliability, and Security
(SAFECOMP), volume 4680 of Lecture Notes on Computer Sci-
ence, pages 106–119. Springer, September 2007. doi: 10.1007/
978-3-540-75101-4_12, isbn: 978-3-540-75100-7.

[Wes69] G. Westinghouse. “Improvement in steam-power-brake devices”,
1869. US Patent 88,929.

[WH00] Yuan-Shun Way and Der-Yu Hsia. “A simple component-connection
method for building binary decision diagrams encoding a fault tree”.
Reliability Engineering & System Safety, 70(1):59–70, October 2000.
doi: 10.1016/S0951-8320(00)00048-X, issn: 0951-8320.

238

https://doi.org/10.1109/TR.2002.801848
https://doi.org/10.1109/TR.2002.801848
https://doi.org/10.1016/0029-5493(70)90167-6
https://doi.org/10.1016/0029-5493(70)90167-6
https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017
https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017
https://news.thomasnet.com/companystory/downtime-costs-auto-industry-22k-minute-survey-481017
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1007/978-3-540-75101-4_12
https://doi.org/10.1007/978-3-540-75101-4_12
https://doi.org/10.1016/S0951-8320(00)00048-X
https://doi.org/10.1016/S0951-8320(00)00048-X

[WM00] Pathirage Gamini Wijayarathna and Mamoru Maekawa. “Extending
fault trees with an AND-THEN gate”. In Proceedings of the 11th
IEEE International Symposium on Software Reliability Engineering
(ISSRE), pages 283–292. IEEE, October 2000. doi: 10.1109/ISSRE.
2000.885879, isbn: 978-0-7695-0807-8.

[WP09] Martin Walker and Yiannis Papadopoulos. “Qualitative temporal
analysis: Towards a full implementation of the Fault Tree Handbook”.
Control Engineering Practice, 17(10):1115–1125, October 2009. doi:
10.1016/j.conengprac.2008.10.003, issn: 0967-0661.

[WP10] Martin Walker and Yiannis Papadopoulos. “A hierarchical method
for the reduction of temporal expressions in pandora”. In Proceedings
of the First Workshop on Dynamic Aspects in Dependability Models
for Fault-Tolerant Systems (DYADEM-FTS), pages 7–12. ACM
New York, April 2010. doi: 10.1145/1772630.1772634, isbn: 978-
1-60558-916-9.

[WS00] Jim Walters and Robert Sumwalt. Aircraft Accident Analysis: Final
Reports. McGraw Hill Professional, 2000. isbn: 978-0-07-137984-7.

[WSB08] Max Walter, Markus Siegle, and Arndt Bode. “Opensesame: the
simple but extensive, structured availability modeling environment”.
Reliability Engineering & System Safety, 93(6):857–873, June 2008.
doi: 10.1016/j.ress.2007.03.034, issn: 0951-8320.

[WvG14] W. Wagner and P. H. A. J. M. van Gelder. “Applying ramssheep
analysis for risk-driven maintenance”. In Safety, Reliability and Risk
Analysis: Beyond the Horizon, pages 703–713. Taylor & Francis
Group, 2014. isbn: 978-1-138-00123-7.

[WX12] Yanfu Wang and Min Xie. “Approach to integrate fuzzy fault tree
with Bayesian network”. Procedia Engineering, 45:131–138, 2012.
doi: 10.1016/j.proeng.2012.08.133, issn: 1877-7058.

[WXNM11] Yan Fu Wang, Min Xie, Kien Ming Ng, and Yi Fei Meng. “Quantita-
tive risk analysis model of integrating fuzzy fault tree with Bayesian
network”. In Proceedings of the IEEE International Conference on
Intelligence and Security Informatics (ISI), pages 267–271, July
2011. doi: 10.1109/ISI.2011.5984095, isbn: 978-1-4577-0082-8.

[XHH+13] Bingfeng Xu, Zhiqiu Huang, Jun Hu, Ou Wei, and Yu Zhou. “Min-
imal cut sequence generation for state/event fault trees”. In Pro-
ceedings of the 2013 Middleware Doctoral Symposium, article no.
3. ACM New York, 2013. doi: 10.1145/2541534.2541592, isbn:
978-1-4503-2548-6.

239

https://doi.org/10.1109/ISSRE.2000.885879
https://doi.org/10.1109/ISSRE.2000.885879
https://doi.org/10.1016/j.conengprac.2008.10.003
https://doi.org/10.1016/j.conengprac.2008.10.003
https://doi.org/10.1145/1772630.1772634
https://doi.org/10.1145/1772630.1772634
https://doi.org/10.1016/j.ress.2007.03.034
https://doi.org/10.1016/j.ress.2007.03.034
https://doi.org/10.1016/j.proeng.2012.08.133
https://doi.org/10.1016/j.proeng.2012.08.133
https://doi.org/10.1109/ISI.2011.5984095
https://doi.org/10.1109/ISI.2011.5984095
https://doi.org/10.1109/ISI.2011.5984095
https://doi.org/10.1145/2541534.2541592
https://doi.org/10.1145/2541534.2541592

[XYM+11] Jianwen Xiang, Kazuo Yanoo, Yoshiharu Maeno, Kumiko Tadano,
Fumio Machida, Atsushi Kobayashi, and Takao Osaki. “Efficient
analysis of fault trees with voting gates”. In Proceedings of the 22nd
IEEE International Symposium on Software Reliability Engineering
(ISSRE), pages 230–239. IEEE, December 2011. doi: 10.1109/
ISSRE.2011.23, isbn: 978-1-4577-2060-4.

[Yev11] Olexandr Yevkin. “An improved modular approach for dynamic fault
tree analysis”. In Proceedings of the Reliability and Maintainability
Symposium (RAMS). IEEE, January 2011. doi: 10.1109/RAMS.
2011.5754437, isbn: 978-1-4244-8857-5.

[Zad75] L. A. Zadeh. “The concept of a linguistic variable and its application
to approximate reasoning”. Information Sciences, 8(3):199–249,
1975. doi: 10.1016/0020-0255(75)90036-5, issn: 0020-0255.

[ZMFW09] Xiaojie Zhang, Qiang Miao, Xianfeng Fan, and Dong Wang. “Dy-
namic fault tree analysis based on Petri nets”. In Proceedings of the
8th International Conference on Reliability, Maintainability and
Safety (ICRMS), pages 138–142. IEEE, July 2009. doi: 10.1109/
ICRMS.2009.5270223, isbn: 978-1-4244-4903-3.

[ZWST03] Xinyu Zang, Dazhi Wang, Hairong Sun, and Kishor S. Trivedi.
“A BDD-based algorithm for analysis of multistate systems
with multistate components”. IEEE Transactions on Comput-
ers, 52(12):1608–1618, December 2003. doi: 10.1109/TC.2003.
1252856, issn: 0018-9340.

[ZZLL11] Hong-Lin Zhang, Chun-Yuan Zhang, Dong Liu, and Rui Li. “A
method of quantitative analysis for dynamic fault tree”. In Proceed-
ings of the Reliability and Maintainability Symposium (RAMS).
IEEE, January 2011. doi: 10.1109/RAMS.2011.5754471, isbn:
978-1-4244-8857-5.

240

https://doi.org/10.1109/ISSRE.2011.23
https://doi.org/10.1109/ISSRE.2011.23
https://doi.org/10.1109/RAMS.2011.5754437
https://doi.org/10.1109/RAMS.2011.5754437
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1109/ICRMS.2009.5270223
https://doi.org/10.1109/ICRMS.2009.5270223
https://doi.org/10.1109/TC.2003.1252856
https://doi.org/10.1109/TC.2003.1252856
https://doi.org/10.1109/RAMS.2011.5754471
https://doi.org/10.1109/RAMS.2011.5754471

Part V

Appendices

241

Appendix A

Questionnaire on EI-joint

To elicit more information from experts at ProRail and several contractors, we sent
out the following questionnaire (Translation from Dutch in italics):

Beantwoord alstublieft voor elke regel in het IHC: Please answer for
each line of the FMECA:

1. Wat is de gemiddelde standtijd van deze faalvorm als geen onderhoud wordt
gepleegd? How long would it take, on average, for an EI-joint to exhibit
this failure mode? Assume no maintenance is performed.

2. Welk van Figure A.1 t/m A.5 geeft het degeneratie-/slijtgedrag van deze
faalvorm het beste weer? In de grafieken gebeurt ongeveer 70% van de
storingen tussen de lijnen ‘snel’ en ‘langzaam’. Which of Figures A.1 through
A.5 best represents the wear/failure process of this failure mode? In the
graphs approx. 70% of the failures occurs between the lines ‘fast’ and ‘slow’.

3. Als een inspection wordt uitgevoerd rond de helft van de standtijd, is het
dan waarschijnlijk dat er duidelijke tekenen van slijtage gevonden worden?
If an inspection is performed around half the time before the expected time
to failure, is it probable that significant signs of wear are observed?

4. Als bij inspectie op de standtijd geen slijtage van deze faalvorm wordt
opgemerkt, is het dan waarschijnlijk dat de faalvorm pas veel later dan
geschat zal optreden? If an inspection is performed at the expected time to
failure, and no wear is observed, does this make it likely that the failure
mode will only occur much later than expected?

5. Treedt deze faalvorm regelmatig op kort na installatie? Bijvoorbeeld door
fabricage- of installatiefouten. Does this failure mode regularly occur shortly
after installation? For example due to errors in manufacturing or installa-
tion.

6. Hoe vaak treedt deze faalvorm op voor de helft van de standtijd? How often
does this failure mode occur before half of the expected time to failure?

243

(a) Heel vaak (>50% van de gevallen).
Very often (>50% of the cases).

(b) Vaak (25 – 50% van de gevallen).
Often (25 – 50% of the cases).

(c) Soms (10 – 25% van de gevallen).
Sometimes (10 – 25% of the cases).

(d) Zelden (1 – 10% van de gevallen).
Rarely (1 – 10% of the cases).

(e) Vrijwel nooit (<1% van de gevallen).
Almost never (<1% of the cases).

7. Hoe vaak treedt deze faalvorm pas later dan 1,5 keer de standtijd op? How
often does this failure mode occur only after 1.5 times the expected time to
failure?

(a) Heel vaak (>50% van de gevallen).
Very often (>50% of the cases).

(b) Vaak (25 – 50% van de gevallen).
Often (25 – 50% of the cases).

(c) Soms (10 – 25% van de gevallen).
Sometimes (10 – 25% of the cases).

(d) Zelden (1 – 10% van de gevallen).
Rarely (1 – 10% of the cases).

(e) Vrijwel nooit (<1% van de gevallen).
Almost never (<1% of the cases).

244

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

Time

C
on

di
tio

n

normal
fast
slow

Figure A.1: Nonlineaire slijtage,
kleine spreiding. Nonlinear wear,
small variance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

Time
C
on

di
tio

n

normal
fast
slow

Figure A.2: Nonlineaire slijtage,
grote spreiging. Nonlinear wear,
large variance.

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

60

80

100

Time

C
on

di
tio

n

normal
fast
slow

Figure A.3: Lineaire slijtage,
kleine spreiding. Linear wear,
small variance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

20

40

60

80

100

Time

C
on

di
tio

n

normal
fast
slow

Figure A.4: Lineaire slijtage,
grote spreiding. Linear wear, large
variance.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

50

100

Time

C
on

di
tio

n

normal
fast
slow

Figure A.5: Geheugenloos (random) falen. Mem-
oryless (random) failures.

245

246

Appendix B

Numerical data used for
plots

247

Model Computation time (s)
DFTCalc

N P Generation Model-checking FTRES

R
ai

lw
ay

ca
bi

ne
ts

2 1 4 <0.01 600
3 1 9 <0.01 600
4 1 176 <0.01 601
2 2 12 3 600
3 2 301 38 602
4 2 >7200 >7200 609
2 3 70 4261 602
3 3 7114 >7200 611
4 3 >7200 >7200 734

F
T

P
P

1 1 4 <0.01 600
2 1 35 <0.01 601
3 1 1242 <0.01 602
4 1 41714 <0.01 603
1 2 15 .7 601
2 2 2469 2296 603
3 2 >7200 >7200 609
4 2 >7200 >7200 626
N k

H
E

C
S

1 1 10.3 <0.01 600.71
2 1 >7200 >7200 603.07
2 2 >7200 >7200 601.19
3 1 >7200 >7200 702.71
3 2 >7200 >7200 610.95
3 3 >7200 >7200 602.04
4 1 >7200 >7200 5328
4 2 >7200 >7200 1063.22
4 3 >7200 >7200 634.54
4 4 >7200 >7200 603.33

Table B.1: Computation times as shown in Figure 6.12 (FTRES times include
600 seconds computation time). Time-out occurred when all remaining programs
had executed at least 7200 seconds.

248

Model Number of states
DFTCalc

N P Peak Final FTRES

R
ai

lw
ay

ca
bi

ne
ts

2 1 741 26 187
3 1 5279 26 465
4 1 133993 26 1395
2 2 17987 712 1851
3 2 504183 1580 7021
4 2 - - 35803
2 3 165693 7493 10231
3 3 11475195 33383 55641
4 3 - - 459307

F
T

P
P

1 1 783 14 193
2 1 15965 34 589
3 1 310791 115 2299
4 1 5998865 115 2299
1 2 17059 356 1327
2 2 1626451 5830 5575
3 2 - - 16495
4 2 - - 39811
N k

H
E

C
S

1 1 10277 41 141
2 1 47054585 - 3845
2 2 34954881 - 521
3 1 - - 103069
3 2 - - 12619
3 3 - - 1143
4 1 - - 2780937
4 2 - - 322121
4 3 - - 29511
4 4 - - 2007

Table B.2: Numbers of states as shown in Figure 6.15. Absent numbers correspond
to time-outs in the computation. On HECS(2,1) and HECS(2,2), DFTCalc timed
out during the final minimisation, which is why these entries have peak values but
no final values.

249

250

Publications by the author

• Dennis Guck, Mark Timmer, Hassan Hatefi, Enno Ruijters, and Mariëlle
Stoelinga. “Modelling and analysis of markov reward automata”. In
Franck Cassez and Jean-François Raskin, editors, Proceedings of the 12th
International Symposium on Automated Technology for Verification and
Analysis (ATVA), volume 8837 of Lecture Notes on Computer Science, pages
168–185. Springer, November 2014. doi: 10.1007/978-3-319-11936-6_13,
isbn: 978-3-319-11935-9.

• Enno Ruijters and Mariëlle Stoelinga. “Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools”. Computer Science Review,
15–16:29–62, 2015. doi: 10.1016/j.cosrev.2015.03.001, issn: 1574-0137.

• Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. “Quantitative attack
tree analysis via priced timed automata”. In Sriram Sankaranarayanan and
Enrico Vicario, editors, Proceedings of the 13th International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS), volume 9268
of Lecture Notes on Computer Science, pages 156–171. Springer, September
2015. doi: 10.1007/978-3-319-22975-1_11, isbn: 978-3-31922974-4.

• Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. “Fault
maintenance trees: reliability contered maintenance via statistical model
checking”. In Proceedings of the Reliability and Maintainability Symposium
(RAMS). IEEE, January 2016. doi: 10.1109/RAMS.2016.7447986, isbn:
978-1-5090-0248-1.

• Enno Ruijters, Dennis Guck, Martijn van Noort, and Mariëlle Stoelinga.
“Reliability-centered maintenance of the electrically insulated railway joint
via fault tree analysis: A practical experience report”. In Proceedings of the
46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 662–669, 2016. doi: 10.1109/DSN.2016.67,
isbn: 978-1-4673-8891-7.

• Enno Ruijters, Dennis Guck, Peter Drolenga, Margot Peters, and Mariëlle
Stoelinga. “Maintenance analysis and optimization via statistical model
checking: Evaluation of a train’s pneumatic compressor”. In Proceedings of
the 13th International Conference on Quantitative Evaluation of SysTems
(QEST), volume 9826 of Lecture Notes on Computer Science, pages 331–347.
Springer, August 2016. doi: 10.1007/978-3-319-43425-4_22, isbn: 978-
3-319-43424-7.

251

https://doi.org/10.1007/978-3-319-11936-6_13
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1109/DSN.2016.67
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22

• Enno Ruijters and Mariëlle Stoelinga. “Better railway engineering through sta-
tistical model checking”. In Proceedings of the 7th International Symposium
on Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA), volume 9952 of Lecture Notes on Computer Science, pages
151–165. Springer, October 2016. doi: 10.1007/978-3-319-47166-2_10,
isbn: 978-3-319-47165-5.

• Enno Ruijters, Stefano Schivo, Mariëlle Stoelinga, and Arend Rensink. “Uni-
form analysis of fault trees through model transformations”. In Proceedings
of the Reliability and Maintainability Symposium (RAMS). IEEE, January
2017. doi: 10.1109/RAM.2017.7889759, isbn: 978-1-5090-5284-4.

• Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mariëlle
Stoelinga. “Rare event simulation for dynamic fault trees”. In Proceedings of
the International Conference on Computer Safety, Reliability, and Security
(SAFECOMP), volume 10488 of Lecture Notes on Computer Science, pages
20–35. Springer, September 2017. doi: 10.1007/978-3-319-66266-4_2,
isbn: 978-3-319-66265-7.

• Stefano Schivo, Buğra M. Yildiz, Enno Ruijters, Christopher Gerking, Rajesh
Kumar, Stefan Dziwok, Arend Rensink, and Mariëlle Stoelinga. “How to
efficiently build a front-end tool for UPPAAL: A model-driven approach”.
In Proceedings of the Symposium on Dependable Software Engineering:
Theories, Tools and Appliations (SETTA), volume 10606 of Lecture Notes
on Computer Science, pages 319–336. Springer, 2017. doi: 10.1007/
978-3-319-69483-2_19, isbn: 978-3-319-69482-5.

• Rajesh Kumar, Stefano Schivo, Enno Ruijters, Buǧra M. Yildiz, David
Huistra, Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga. “Effective
analysis of attack trees: a model-driven approach”. In Proceedings of the
21st International Conference on Fundamental Approaches to Software
Engineering (FASE), volume 10802 of Lecture Notes on Computer Science,
pages 56–73. Springer, 2018. doi: 10.1007/978-3-319-89363-1_4, isbn:
978-3-319-89362-4.

252

https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1007/978-3-319-47166-2_10
https://doi.org/10.1109/RAM.2017.7889759
https://doi.org/10.1109/RAM.2017.7889759
https://doi.org/10.1007/978-3-319-66266-4_2
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-89363-1_4
https://doi.org/10.1007/978-3-319-89363-1_4

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the Real
World. Faculty of Science, Mathematics
and Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient
Abstractions for Visualization and
Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervisory
Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
ibility and Trustworthiness. Faculty
of Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and
Their Clients. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Networks.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics
and Computer Science, TU/e. 2015-08

S. Cranen. Getting the point
— Obtaining and understanding fix-
points in model checking. Faculty of
Mathematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned in
the analysis of the EMV and TLS se-
curity protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an
Architecture Framework and Quality
Evaluation for Automotive Software
Systems. Faculty of Mathematics and
Computer Science, TU/e. 2015-12

J. Bransen. On the Incremen-
tal Evaluation of Higher-Order At-
tribute Grammars. Faculty of Science,
UU. 2015-13

S. Picek. Applications of Evolution-
ary Computation to Cryptology. Fac-
ulty of Science, Mathematics and Com-
puter Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic,
Games, and Relations of Consequence.

Faculty of Mathematics and Computer
Science, TU/e. 2016-03
S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems
for Healthcare. Faculty of Mathematics
and Computer Science, TU/e. 2016-04
P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-
in-Time. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2016-05
Y. Luo. From Conceptual Models to
Safety Assurance – Applying Model-
Based Techniques to Support Safety
Assurance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06
B. Ege. Physical Security Analysis
of Embedded Devices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-07
A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08
T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2016-09
I. David. Run-time resource man-
agement for component-based systems.
Faculty of Mathematics and Computer
Science, TU/e. 2016-10
A.C. van Hulst. Control Synthesis
using Modal Logic and Partial Bisimi-
larity – A Treatise Supported by Com-
puter Verified Proofs. Faculty of Me-
chanical Engineering, TU/e. 2016-11
A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.

Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile
Communication Security. Faculty of
Science, Mathematics and Computer
Science, RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sciences,
UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Sci-
ence, UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the In-
ternet of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty

of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of
Limitations and Opportunities. Fac-
ulty of Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your cake
and eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. Şutîi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific
Languages. Faculty of Mathematics
and Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verifi-
cation of Synchronisation Classes in
Java: A Practical Approach. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State
Machines to Reliable Multi-threaded
Java Code. Faculty of Mathematics
and Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis
of Runtime Scheduling in Real-time
Streaming Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behav-
ioral Specification: unifying model-
ing and programming. Faculty of
Mathematics and Natural Sciences,
UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art
of railway maintenance: Analysis
and optimization of maintenance via
fault trees and statistical model check-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-10

Samenvatting
Onderhoud is cruciaal voor de werking van moderne systemen. Tijdige inspecties,
reparaties, en vervangingen helpen dure storingen te voorkomen, en verzekeren dat
systemen goed en veilig blijven functioneren.

Tegelijkertijd kost dit onderhoud veel geld. Er is personeel nodig, reserveon-
derdelen moeten gekocht worden, en vaak is het systeem niet bruikbaar terwijl
er een inspectie of reparatie wordt uitgevoerd. Te veel onderhoud is verspilling
van geld, hindert het gebruik van het systeem, en kan zelfs ongelukken veroorza-
ken als het onderhoud onjuist wordt uitgevoerd. Het is dus belangrijk om een
onderhoudsbeleid te vinden met een goede balans van kosten en betrouwbaarheid.

Om deze balans te vinden, moeten we begrijpen hoe een systeem mettertijd slijt,
en wat de gevolgen zijn van mogelijke handelingen om deze slijtage te verhelpen of
voorkomen. Dit proefschrift presenteert onderhoudsfoutenbomen (FMTs, Engels:
fault maintenance trees), een nieuw formalisme voor kwantitatieve analyse van de
gevolgen van onderhoud op kosten en systeembetrouwbaarheid, om de analyse en
verbetering van onderhoudsbeleid te ondersteunen.

FMTs zijn gebaseerd op de industriële standaard foutenbomen, die al decennia
gebruikt worden om de betrouwbaarheid van veiligheidskritische system, zoals
kerncentrales en vliegtuigen, te bestuderen. Foutenbomen zijn in de jaren ’60
ontwikkeld, en sindsdien is er een scala aan uitbreidingen en varianten ontwikkeld.
Deze ondersteunen de analyse van systemen met tijdsafhankelijke gevolgen van
storingen, onzekere faalkansen, en diverse andere eigenschappen. Het eerste deel
van dit proefschrift brengt het oerwoud aan uitbreidingen van foutenbomen in
kaart, met een overzicht van meer dan 150 artikelen over dit onderwerp.

Het tweede deel van dit proefschrift introduceert FMTs, die foutenbomen
uitbreiden met onderhoudsacties zoals inspecties en vervangingen van onderdelen.
Met deze informatie kunnen we de kans van een systeemstoring berekenen gegeven
een bepaald onderhoudsplan. FMTs bevatten ook informatie over de kosten van
verschillende onderhoudsacties en storingen, waarmee de verwachte totale kosten
van een gegeven onderhoudsplan berekend kunnen worden. Hiermee maken FMTs
het mogelijk om verschillende onderhoudsplannen te vergelijken wat betreft hun
effecten op systeembetrouwbaarheid en -kosten, waardoor FMTs ondersteuning
bieden bij het kiezen van het onderhoudsbeleid met de beste balans hiertussen.

Technisch worden FMTs doorgerekend door middel van statistisch model check-
ing (SMC), een moderne techniek om complexe systemen te analyseren zonder de
grote hoeveelheden geheugen te gebruiken die veel andere analysetechnieken voor
uitgebreide foutenbomen nodig hebben. SMC maakt het mogelijk om statistisch
gegronde betrouwbaarheidsintervallen te berekenen van kwantitatieve maten zoals
kosten, systeembetrouwbaarheid en het verwachte aantal storingen per tijdseenheid.

SMC werkt voor veel systemen goed, maar heeft een nadeel dat in onze context
erg merkbaar is: Nauwkeurige schattingen van lage kansen hebben veel reken-

tijd nodig. Daarom presenteren we ook een tweede analysetechniek voor FMTs,
gebaseerd op het recent ontwikkelde Path-ZVA algoritme voor de simulatie van
zeldzame gebeurtenissen (Engels: rare event simulation). Hoewel deze techniek nu
beperkt is tot het berekenen van de gemiddelde beschikbaarheid van een systeem,
is hierbij veel minder rekentijd nodig dan voor SMC bij systemen met een hoge
beschikbaarheid, terwijl de statistische garanties van SMC bewaard blijven.

Ten slotte willen we dat FMTs ook in de praktijk toepasbaar zijn. Hiervoor
presenteren we in het derde deel van dit proefschrift twee casussen uit de spoor-
wegindustrie: een elektrische scheidingslas en een luchtcompressor. Deze casussen
zijn uitgevoerd in nauwe samenwerking met onze industriële partners, en laten zien
dat FMTs echte systemen en onderhoudsplannen nauwkeurig kunnen modelleren,
alsmede inzichten kunnen opleveren die kunnen helpen om onderhoudsplannen te
verbeteren.

Failure
EI-joint

M
echanicalfailure

Failure
electricalisolation

4
2

3
5

5a
5b R
D
E
P

R
D
E
P

1
8

14
15

Joint
shorted

9
10a

10b
11

12
13

R
D
E
P

6

Maintenance is crucial for the operation of

modern systems, to prevent failures and en-

sure that systems function properly and safely.

This maintenance is also costly. Too much

maintenancewastes time and parts, and pre-

vents the system from being used for its in-

tended purpose. It is therefore important to

find a goodmaintenance policy that balances

cost and dependability.

This thesis introduces a novel formalism to

assess the cost and effectiveness of a main-

tenance policy: Fault Maintenance Trees. By

combining the industry-standard technique

of fault tree analysis with advanced mainte-

nance models, we can calculate how much

the maintenance will cost, and how many

failures it prevents. Thus, we can compare

different maintenance strategies and choose

the one that best fits the needs of a particu-

lar system.

	Abstract
	Acknowledgements
	Introduction
	Reliability analysis
	Maintenance
	Fault Tree Analysis
	Fault Maintenance Trees
	Statistical Model Checking
	Problem Description
	Main contributions
	Thesis outline

	I Fault trees
	Introduction to fault trees
	Related work
	Legal background

	Static fault trees
	Fault Tree Structure
	Formal definition
	Semantics

	Qualitative analysis
	Minimal cut sets
	Minimal path sets
	Common cause failures

	Quantitative analysis: Single-time
	BE failure probabilities
	Reliability
	Expected Number of Failures

	Quantitative analysis: Continuous-time
	BE failure probabilities
	Reliability
	Availability
	Mean Time To Failure
	Mean Time Between Failures
	Expected Number of Failures
	Sensitivity analysis

	Importance measures
	Tool support
	Commercial tools

	Conclusion

	Dynamic Fault Trees
	Structure
	Qualitative analysis
	Quantitative analysis
	Algebraic analysis
	Analysis by Markov Chains
	Analysis using Dynamic Bayesian Networks
	Other approaches
	Simulation

	Conclusions

	Fault tree extensions
	FTA with fuzzy numbers
	Importance measures for fault trees with fuzzy numbers
	Analysis methods measures for fault trees with fuzzy numbers

	Fault Trees with dependent events
	Repairable Fault Trees
	Analysis

	Fault trees with temporal requirements
	State-Event Fault Trees
	Miscellaneous FT extensions
	Comparison
	Conclusion

	II Integrating maintenance into fault trees
	Fault maintenance trees
	Maintenance concepts
	Fault tree modeling
	Basic events
	Gates
	Rate dependencies
	Formal definition

	Maintenance modeling
	Costs
	FMT analysis via statistical model checking
	Metrics
	Unified analysis via model-driven engineering

	Conclusion

	Analysis via importance sampling
	Rare Event Simulation
	Change of Measure
	The Path-ZVA Algorithm

	Fault Maintenance Trees
	Dynamic and Repairable Fault Trees
	Compositional Semantics
	Reducing I/O-IMCs to Markov Chains

	Methodology
	Case Studies and Results
	Railway Cabinets
	Fault-Tolerant Parallel Processor
	Hypothetical Example Computer System
	Analysis results

	Conclusion

	III Case studies
	FMTs in practice: Analysis of the electrically insulated joint
	Case description
	Joint construction
	Failure modes
	Inspections and repairs
	NRG-Joint

	Approach
	Qualitative modelling
	Quantitative modelling
	Metrics
	Validation

	Analysis and results
	Reference policy
	Optimisation of maintenance policy
	Comparison to new joint model
	Modelling power of FMTs

	Conclusion
	Conclusions on EI-joints

	FMTs in practice: Analysis of the pneumatic compressor
	Case description
	Purpose and operation
	Maintenance

	Approach
	Qualitative modelling
	Quantitative modelling
	Metrics
	Validation

	Analysis and results
	Conclusion
	Conclusions on the compressor

	IV Conclusions
	Conclusions
	Contributions
	Discussion and Future Work
	Outlook

	References

	V Appendices
	Questionnaire on EI-joint
	Numerical data used for plots

	Publications by the author
	Samenvatting

