
Rare event simulation
for dynamic fault trees

Enno Ruijters, Daniël Reijsbergen,
Pieter-Tjerk de Boer, and Mariëlle Stoelinga
University of Twente
13 September 2017



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability analysis.
▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance sampling)
▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees → Faster/more accurate
fault tree simulation.

2 / 26



Dependability analysis

Traditionally two categories:

Analytic (Monte Carlo) Simulation

Exact results Confidence intervals

High memory requirements Low memory requirements

Infeasible for complex systems Infeasible for highly reliable systems

3 / 26



Monte carlo simulation

▶ Draw samples from probability

distribution.

▶ Estimate property of interest (e.g. mean)

from samples.

▶ Example:
▶ Spin roulette wheel 1000 times.
▶ Observe 36 times green outcome

(95% CI boundary).
▶ Estimate 3.6% probability of green.
▶ (Actual: 1

37 = 2.7%).

▶ Drawback: For improbable events, many

samples are needed.

4 / 26



Rare event simulation: Importance sampling

▶ To reduce required samples: Adjust

probabilities and compensate result

(Change of Measure).

▶ Make rare events less rare.

▶ Example:
▶ Spin American roulette wheel 1000

times.
▶ Observe 65 times green outcome

(95% CI boundary).
▶ Estimate 6.5% probability of green

in adjusted system.
▶ (Actual: 2

38 = 5.3%).
▶ Estimate 3.3% probability of green

in original system.
▶ (Actual: 1

37 = 2.7%).

▶ Yields more accurate results and/or needs fewer samples.
5 / 26



Fault trees

▶ Industry-standard tool for reliability analysis

▶ Describe combinations of faults leading to failures

▶ Root of tree: Top Event; i.e. system failure

▶ Leaves: Basic Events; i.e. elementary failures and faults

▶ Nodes: Gates; describe how faults combine

BE AND OR
k/N

VOTE PAND SPARE FDEP

Images of the elements in a dynamic fault tree

6 / 26



DFT example

Computer system failure

Workstation 1 failure Workstation 𝑛 failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

7 / 26



Modelling Basic Events

▶ Degradation modeled in distinct phases.

▶ Interactive Markov chain:

𝑠0

New

𝑠1

Okay

𝑠2

Degraded

𝑠4

Failed

𝜆1 𝜆2 𝜆3

8 / 26



Rare event simulation (RES)

Multiple techniques to improve Monte Carlo simulations of rare events.

▶ Importance splitting:
▶ Start simulating as usual.
▶ Record which runs got ‘close’ to the rare event.
▶ Restart multiple simulations from ‘close’ points.
▶ Repeat as needed.
▶ Estimate measure of interest.

▶ Importance sampling:
▶ Alter system to increase likelihood of rare event.
▶ Perform simulation runs, recording influence of alterations.
▶ Adjust observations to correct for alterations.
▶ Estimate measure of interest.

9 / 26



Comparison of RES techniques

Splitting Sampling
Requires formalization of distance Requires specification of ‘rare’ transitions

Changes simulation engine Changes system under simulation

Good for rare events of many steps Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event after only a

few, low-probability transitions. Such models provide few points to split the

samples.

10 / 26



Importance sampling of Markov chains: an example

𝑠0

𝑠1

𝑠2

1%

99%

▶ Probability of red state?

▶ Estimate 1 (100 runs): 0%

▶ Estimate 2 (100 runs): 1%

▶ Estimate 3 (100 runs): 1%

▶ Estimate 4 (100 runs): 1%

▶ Estimate 5 (100 runs): 0%

▶ Estimate 6 (100 runs): 0%

▶ Estimate 7 (100 runs): 2%

11 / 26



Importance sampling of Markov chains: an example

Make bad state 10 times more likely:

𝑠0

𝑠1

𝑠2

10%
× 1

10

90% × 9990

▶ Probability of red state?

▶ Estimate 1 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 2 (100 runs): 15 ⋅ 1
10 = 1.5%

▶ Estimate 3 (100 runs): 6 ⋅ 1
10 = 0.6%

▶ Estimate 4 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 5 (100 runs): 13 ⋅ 1
10 = 1.3%

▶ Estimate 6 (100 runs): 12 ⋅ 1
10 = 1.2%

▶ Estimate 7 (100 runs): 14 ⋅ 1
10 = 1.4%

12 / 26



Importance sampling of Markov chains: continuous
time

𝑠0

𝑠1

𝜆 = 0.01

▶ Probability of reaching red state within 1
time unit?

▶ Actual = 1 − 𝑒−0.01 ≈ 0.995%.

▶ Estimate 1 (100 runs): 0%

▶ Estimate 2 (100 runs): 1%

▶ Estimate 3 (100 runs): 2%

▶ Estimate 4 (100 runs): 1%

▶ Estimate 5 (100 runs): 0%

▶ Estimate 6 (100 runs): 0%

▶ Estimate 7 (100 runs): 0%

13 / 26



Importance sampling of Markov chains: continuous
time

𝑠0

𝑠1

𝜆 = 0.1
𝐶 = 1

10𝑒∆𝑡⋅0.01⋅(10−1)

▶ Probability of reaching red state within 1

time unit?

▶ Estimate 1 (100 runs): 0.42%

▶ Estimate 2 (100 runs): 1.27%

▶ Estimate 3 (100 runs): 0.73%

▶ Estimate 4 (100 runs): 0.41%

▶ Estimate 5 (100 runs): 1.15%

▶ Estimate 6 (100 runs): 1.16%

▶ Estimate 7 (100 runs): 0.92%

14 / 26



Importance sampling of Markov chains:
overcompensating

Increasing the rare event too much:

𝑠0

𝑠1

𝜆 = 10
𝐶 = 𝑒∆𝑡⋅0.01⋅(1000−1)

1000

▶ Probability of reaching red state within 1

time unit?

▶ Estimate 1 (100 runs): 0.64%

▶ Estimate 2 (100 runs): 0.45%

▶ Estimate 3 (100 runs): 0.85%

▶ Estimate 4 (100 runs): 0.86%

▶ Estimate 5 (100 runs): 0.87%

▶ Estimate 6 (100 runs): 11.26%

▶ Estimate 7 (100 runs): 0.67%

15 / 26



Path-ZVA algorithm

▶ Importance sampling algorithm for Markovian models.

▶ Divides states into three categories:
▶ ‘Perfect’ states reached frequently.
▶ ‘Bad’ states reached rarely.
▶ ‘Connecting’ states inbetween.

▶ Estimates:
▶ Probability of reaching ‘bad’ states before returning to ‘perfect’ states.
▶ Fraction of time spend in ‘bad’ states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to indicate

‘rareness’.

16 / 26



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.

▶ Path-ZVA stores the subset of states in dominant paths.

▶ All other states only generated as reached, and not stored.

𝑠0 𝑠1 𝑠2 𝑠3𝑠4

𝜆 = 3𝜖2
𝜆 = 2𝜖1 𝜆 = 2𝜖1

𝜆 = 𝜖0

𝜆 = 𝜖0

𝜆 = 𝜖0

𝜆 = 2𝜖1

𝜆 = 𝜖0

17 / 26



Railway cabinets case study

▶ Redundant system of relay and high-voltage cabinets.

▶ Used in railway signaling.

▶ Numbers of cabinets varies depending on track section length.
▶ We consider 2 to 4 cabinets.

▶ Redundancy can survive failure of single cabinet.

18 / 26



Results: Accuracy

Exact result for DFTCalc, 95% confidence for others:

Unavailability
N P DFTCalc FTRES MC

R
ai
lw
ay

ca
bi
ne

ts

2 1 4.25685 ⋅ 10−4 [4.256; 4.258] ⋅ 10−4 [4.239; 4.280] ⋅ 10−4

3 1 7.71576 ⋅ 10−4 [7.713; 7.716] ⋅ 10−4 [7.694; 7.751] ⋅ 10−4

4 1 1.99929 ⋅ 10−3 [1.998; 2.000] ⋅ 10−3 [1.999; 2.004] ⋅ 10−4

2 2 4.55131 ⋅ 10−8 [4.548; 4.555] ⋅ 10−8 [1.632; 4.387] ⋅ 10−8

3 2 6.86125 ⋅ 10−8 [6.846; 6.873] ⋅ 10−8 [0.673; 1.304] ⋅ 10−7

4 2 – [2.358; 2.394] ⋅ 10−7 [2.282; 3.484] ⋅ 10−7

2 3 5.97575 ⋅ 10−12 [5.714; 6.252] ⋅ 10−12 –

3 3 – [5.724; 7.914] ⋅ 10−12 –

4 3 – [0.337; 1.871] ⋅ 10−11 –

19 / 26



Literature case studies

▶ Fault Tolerant Parallel Processor:
▶ Literature case study, birth of DFTs
▶ Network of workstations interconnected with network elements.
▶ Every workstation have multiple processors, with one spare.
▶ Vary number of processor groups 1 – 4.

▶ Hypothetical example computer system:
▶ Literature case study, NASA handbook of (D)FTs
▶ Computer with redundant processors, memory, and buses.
▶ Hardware and software components of operator interface.
▶ Entire system replicated 𝑁 times, of which 𝑘 must remain operational.

20 / 26



Results: Accuracy

Exact result for DFTCalc, 95% confidence for others:
Unavailability

N P DFTCalc FTRES MC

FT
PP

1 1 2.18303 ⋅ 10−10 [2.182; 2.184] ⋅ 10−10 –

4 1 2.22979 ⋅ 10−10 [2.229; 2.230] ⋅ 10−10 [0; 2.140] ⋅ 10−8

1 2 1.76174 ⋅ 10−20 [1.761; 1.763] ⋅ 10−20 –

4 2 – [1.257; 2.553] ⋅ 10−20 –

H
EC

S

N k DFTCalc FTRES MC

1 1 4.12485 ⋅ 10−5 [4.118; 4.149] ⋅ 10−5 [2.615; 10.64] ⋅ 10−5

2 1 – [3.010; 3.061] ⋅ 10−9 –

2 2 – [8.230; 8.359] ⋅ 10−5 [0; 1.734] ⋅ 10−4

4 1 – [1.328; 8.213] ⋅ 10−17 –

4 2 – [1.145; 1.270] ⋅ 10−12 –

4 3 – [1.744; 1.817] ⋅ 10−8 –

4 4 – [1.609; 1.667] ⋅ 10−4 –

21 / 26



Overall results: State space

102

103

104

105

106

107

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

N
r. 

of
 s

ta
te

s 
st

or
ed

Railway cabinets HEPC

DFTCalc max.
FTRES

DFTCalc final

FTPP
=k
=N

▶ FTRES always below DFTCalc maximal state space size.

▶ FTRES computes results where DFTCalc does not.

22 / 26



Overall results: Speed

100

101

102

103

104

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

Ti
m

e 
(s

)

Railway cabinets HECS
=k

DFTCalc
FTRES

=N

FTPP

▶ FTRes and MC spend a constant 5 mins. simulating.

▶ Simulation time mostly dominates state-space exploration.

▶ Almost all DFTCalc experiments for HECS ran out of memory.
23 / 26



Conclusions

▶ New (in fact, first) method applying rare event simulation to dynamic fault

trees.

▶ On-the-fly composition reduces state-space storage.

▶ Importance sampling provides tight confidence intervals even for very

rare events.

▶ We handle larger models than DFTCalc, and models of more reliable

systems than Monte Carlo simulation.

24 / 26



Future work

▶ Measures beyond availability (e.g. reliability).

▶ Non-Markovian timing of e.g. maintenance actions.

▶ On-the-fly reduction of equivalent states.

▶ Nondeterminism to cover full set of DFTs.

25 / 26



Thank you for your attention.

Questions?

26 / 26


	Introduction
	Rare event simulation
	Case studies
	Railway cabinets
	Literature case studies

	Conclusions

