### **UNIVERSITY OF TWENTE.**

## Rare event simulation for dynamic fault trees

Enno Ruijters, Daniël Reijsbergen, Pieter-Tjerk de Boer, and Mariëlle Stoelinga University of Twente 13 September 2017





### Our contribution in a nutshell

Many frameworks can provide quantitative dependability analysis.

- We use dynamic fault trees.
- Compute system availability, reliability, MTTF, etc.

Complex systems are computationally difficult to analyze:

- Complex  $\rightarrow$  analytic approaches are memory-intensive.
- Rare failures  $\rightarrow$  Monte Carlo simulation requires many samples.

Our solution: rare event simulation (through importance sampling)

- Make rare events more likely.
- Compensate the final result.
- Automatically.

► Rare event simulation + dynamic fault trees → Faster/more accurate fault tree simulation.

### Traditionally two categories:



### Monte carlo simulation

- Draw samples from probability distribution.
- Estimate property of interest (e.g. mean) from samples.
- Example:
  - ► Spin roulette wheel 1000 times.
  - Observe 36 times green outcome (95% CI boundary).
  - Estimate 3.6% probability of green.
  - (Actual:  $\frac{1}{37} = 2.7\%$ ).
- Drawback: For improbable events, many samples are needed.



### Rare event simulation: Importance sampling

- To reduce required samples: Adjust probabilities and compensate result (Change of Measure).
- Make rare events less rare.
- Example:
  - Spin American roulette wheel 1000 times.
  - Observe 65 times green outcome (95% CI boundary).
  - Estimate 6.5% probability of green in adjusted system.
  - ▶ (Actual:  $\frac{2}{38} = 5.3\%$ ).
  - Estimate 3.3% probability of green in original system.
  - ▶ (Actual:  $\frac{1}{37} = 2.7\%$ ).





- Industry-standard tool for reliability analysis
- Describe combinations of faults leading to failures, minimum
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine



Images of the elements in a dynamic fault tree

### **DFT example**



### **Modelling Basic Events**

- Degradation modeled in distinct phases.
- ► Interactive Markov chain:



### Rare event simulation (RES)

Multiple techniques to improve Monte Carlo simulations of rare events.

Importance splitting:

- Start simulating as usual.
- Record which runs got 'close' to the rare event.
- Restart multiple simulations from 'close' points.
- Repeat as needed.
- Estimate measure of interest.

#### Importance sampling:

- Alter system to increase likelihood of rare event.
- Perform simulation runs, recording influence of alterations.
- Adjust observations to correct for alterations.
- Estimate measure of interest.

### **Comparison of RES techniques**

| Splitting                          | Sampling Sampling                            |
|------------------------------------|----------------------------------------------|
| Requires formalization of distance | Requires specification of 'rare' transitions |
| Changes simulation engine          | Changes system under simulation              |
| Good for rare events of many steps | Good for rare event of few steps             |
| Limit case: fewer runs needed      | Limit case: only one run needed              |

We use importance sampling as our system reaches the rare event after only a few, low-probability transitions. Such models provide few points to split the samples.

### Importance sampling of Markov chains: an example



- Probability of red state?
- Estimate 1 (100 runs): 0%
- Estimate 2 (100 runs): 1%
- Estimate 3 (100 runs): 1%
- Estimate 4 (100 runs): 1%
- Estimate 5 (100 runs): 0%
- Estimate 6 (100 runs): 0%
- Estimate 7 (100 runs): 2%

### Importance sampling of Markov chains: an example

Make bad state 10 times more likely:



- Probability of red state?
- Estimate 1 (100 runs):  $10 \cdot \frac{1}{10} = 1\%$
- Estimate 2 (100 runs):  $15 \cdot \frac{1}{10} = 1.5\%$
- Estimate 3 (100 runs):  $6 \cdot \frac{1}{10} = 0.6\%$
- Estimate 4 (100 runs):  $10 \cdot \frac{1}{10} = 1\%$
- Estimate 5 (100 runs):  $13 \cdot \frac{1}{10} = 1.3\%$
- Estimate 6 (100 runs):  $12 \cdot \frac{1}{10} = 1.2\%$
- Estimate 7 (100 runs):  $14 \cdot \frac{1}{10} = 1.4\%$

# Importance sampling of Markov chains: continuous time



- Probability of reaching red state within 1 time unit?
  - Actual =  $1 e^{-0.01} \approx 0.995\%$ .
- Estimate 1 (100 runs): 0%
- Estimate 2 (100 runs): 1%
- Estimate 3 (100 runs): 2%
- Estimate 4 (100 runs): 1%
- Estimate 5 (100 runs): 0%
- Estimate 6 (100 runs): 0%
- Estimate 7 (100 runs): 0%

# Importance sampling of Markov chains: continuous time

- $s_0$   $\lambda = 0.1$   $C = \frac{1}{10}e^{\Delta t \cdot 0.01 \cdot (10-1)}$   $s_1$
- Probability of reaching red state within 1 time unit?
- Estimate 1 (100 runs): 0.42%
- Estimate 2 (100 runs): 1.27%
- Estimate 3 (100 runs): 0.73%
- Estimate 4 (100 runs): 0.41%
- Estimate 5 (100 runs): 1.15%
- Estimate 6 (100 runs): 1.16%
- Estimate 7 (100 runs): 0.92%

# Importance sampling of Markov chains: overcompensating

Increasing the rare event too much:



- Probability of reaching red state within 1 time unit?
- Estimate 1 (100 runs): 0.64%
- Estimate 2 (100 runs): 0.45%
- Estimate 3 (100 runs): 0.85%
- Estimate 4 (100 runs): 0.86%
- Estimate 5 (100 runs): 0.87%
- Estimate 6 (100 runs): 11.26%
- Estimate 7 (100 runs): 0.67%

### Path-ZVA algorithm

Importance sampling algorithm for Markovian models.

Divides states into three categories:

- 'Perfect' states reached frequently.
- 'Bad' states reached rarely.
- 'Connecting' states inbetween.

#### Estimates:

- Probability of reaching 'bad' states before returning to 'perfect' states.
- Fraction of time spend in 'bad' states.

Transition rates parameterized as  $r \cdot \epsilon^n$  with  $0 < \epsilon << 1$  to indicate 'rareness'.

### Applying Path-ZVA to DFTs

 $\lambda = 2\epsilon^1$ 

 $\lambda = \epsilon^0$ 

Basic idea: Compute state space on-the-fly.

 $s_0$ 

- Path-ZVA stores the subset of states in dominant paths.
- All other states only generated as reached, and not stored.

 $= 3\epsilon^2$ 

 $\lambda = \epsilon^0$ 

 $\lambda = \epsilon^0$ 

 $s_1$ 

 $= 2\epsilon^1$ 

 $\lambda = \epsilon^0$ 

S2

 $= 2\epsilon^1$ 

 $s_3$ 

21.7

### Railway cabinets case study

- Redundant system of relay and high-voltage cabinets.
- Used in railway signaling.
- Numbers of cabinets varies depending on track section length.
  - We consider 2 to 4 cabinets.
- Redundancy can survive failure of single cabinet.

### **Results: Accuracy**

Exact result for DFTCalc, 95% confidence for others:

|                  |   |   | Unavailability           |                                 |                                |
|------------------|---|---|--------------------------|---------------------------------|--------------------------------|
|                  | Ν | Ρ | DFTCalc                  | FTRES                           | MC                             |
|                  | 2 | 1 | $4.25685 \cdot 10^{-4}$  | $[4.256; 4.258] \cdot 10^{-4}$  | $[4.239; 4.280] \cdot 10^{-4}$ |
| Railway cabinets | 3 | 1 | $7.71576 \cdot 10^{-4}$  | $[7.713; 7.716] \cdot 10^{-4}$  | $[7.694; 7.751] \cdot 10^{-4}$ |
|                  | 4 | 1 | $1.99929 \cdot 10^{-3}$  | $[1.998; 2.000] \cdot 10^{-3}$  | $[1.999; 2.004] \cdot 10^{-4}$ |
|                  | 2 | 2 | $4.55131 \cdot 10^{-8}$  | $[4.548; 4.555] \cdot 10^{-8}$  | $[1.632; 4.387] \cdot 10^{-8}$ |
|                  | 3 | 2 | $6.86125 \cdot 10^{-8}$  | $[6.846; 6.873] \cdot 10^{-8}$  | $[0.673; 1.304] \cdot 10^{-7}$ |
|                  | 4 | 2 | MES E-                   | $[2.358; 2.394] \cdot 10^{-7}$  | $[2.282; 3.484] \cdot 10^{-7}$ |
|                  | 2 | 3 | $5.97575 \cdot 10^{-12}$ | $[5.714; 6.252] \cdot 10^{-12}$ | - Amangai                      |
|                  | 3 | 3 | -                        | $[5.724; 7.914] \cdot 10^{-12}$ |                                |
|                  | 4 | 3 | -                        | $[0.337; 1.871] \cdot 10^{-11}$ |                                |

### Literature case studies

### Fault Tolerant Parallel Processor:

- Literature case study, birth of DFTs
- Network of workstations interconnected with network elements.
- Every workstation have multiple processors, with one spare.
- ► Vary number of processor groups 1 4.
- Hypothetical example computer system:
  - Literature case study, NASA handbook of (D)FTs
  - Computer with redundant processors, memory, and buses.
  - Hardware and software components of operator interface.
  - Entire system replicated N times, of which k must remain operational.

### **Results: Accuracy**

### Exact result for DFTCalc, 95% confidence for others:

|       |             |                                       | Unavailability           |                                                                                                                                 |                                |  |
|-------|-------------|---------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|
|       | Ν           | Р                                     | DFTCalc                  | FTRES                                                                                                                           | мс                             |  |
| FTPP  | 1           | 1                                     | $2.18303 \cdot 10^{-10}$ | $[2.182; 2.184] \cdot 10^{-10}$                                                                                                 |                                |  |
|       | 4           | 1                                     | $2.22979 \cdot 10^{-10}$ | $[2.229; 2.230] \cdot 10^{-10}$                                                                                                 | $[0; 2.140] \cdot 10^{-8}$     |  |
|       | 1           | 2                                     | $1.76174 \cdot 10^{-20}$ | $[1.761; 1.763] \cdot 10^{-20}$                                                                                                 |                                |  |
| 12.00 | 4           | 2                                     |                          | $[1.257; 2.553] \cdot 10^{-20}$                                                                                                 |                                |  |
| 4.96  | Ν           | k                                     | DFTCalc                  | FTRES                                                                                                                           | MC                             |  |
| HECS  | 1           | 1                                     | $4.12485 \cdot 10^{-5}$  | $[4.118; 4.149] \cdot 10^{-5}$                                                                                                  | $[2.615; 10.64] \cdot 10^{-5}$ |  |
|       | 2           | 1                                     | 1031 (P-101)             | $[3.010; 3.061] \cdot 10^{-9}$                                                                                                  | State - Child                  |  |
|       | 2           | 2                                     | 265°-                    | $[8.230; 8.359] \cdot 10^{-5}$                                                                                                  | $[0; 1.734] \cdot 10^{-4}$     |  |
|       | 1000        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 21.1                     |                                                                                                                                 |                                |  |
| T     | 4           | 1                                     |                          | $[1.328; 8.213] \cdot 10^{-17}$                                                                                                 |                                |  |
| H     | 4           | 1<br>2                                | -                        | $ [1.328; 8.213] \cdot 10^{-17}  [1.145; 1.270] \cdot 10^{-12} $                                                                |                                |  |
| T     | 4<br>4<br>4 | 1<br>2<br>3                           |                          | $ \begin{array}{c} [1.328; 8.213] \cdot 10^{-17} \\ [1.145; 1.270] \cdot 10^{-12} \\ [1.744; 1.817] \cdot 10^{-8} \end{array} $ |                                |  |



- FTRES always below DFTCalc maximal state space size.
- ▶ FTRES computes results where DFTCalc does not.

### **Overall results: Speed**



- Simulation time mostly dominates state-space exploration.
- Almost all DFTCalc experiments for HECS ran out of memory.

FTRes and MC spend a constant 5 mins. simulating.

- New (in fact, first) method applying rare event simulation to dynamic fault trees.
- On-the-fly composition reduces state-space storage.
- Importance sampling provides tight confidence intervals even for very rare events.
- We handle larger models than DFTCalc, and models of more reliable systems than Monte Carlo simulation.

- Measures beyond availability (e.g. reliability).
- Non-Markovian timing of e.g. maintenance actions.
- On-the-fly reduction of equivalent states.
- Nondeterminism to cover full set of DFTs.

### Thank you for your attention.

### **Questions?**