
Importance sampling for dynamic
fault trees

Enno Ruijters, Daniël Reijsbergen,
Pieter-Tjerk de Boer, and Mariëlle
Stoelinga
University of Twente
18 October 2018



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.

▶ Compute system availability, reliability, MTTF, etc.
▶ Complex systems are computationally difficult to analyze:

▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:

▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.

▶ Rare failures → Monte Carlo simulation requires many samples.
▶ Our solution: rare event simulation (through importance

sampling)
▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.

▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.

▶ Automatically.
▶ Rare event simulation + dynamic fault trees →

Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability
analysis.

▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance
sampling)

▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees →
Faster/more accurate fault tree simulation.

2 / 23



Monte carlo simulation

▶ Draw samples from probability
distribution.

▶ Estimate property of interest (e.g.
mean) from samples.

▶ Example:
▶ Spin roulette wheel 1000 times.
▶ Observe 36 times green outcome

(95% CI boundary).
▶ Estimate 3.6% probability of

green.
▶ (Actual: 1

37 = 2.7%).
▶ Drawback: For improbable events,

many samples are needed.

3 / 23



Monte carlo simulation

▶ Draw samples from probability
distribution.

▶ Estimate property of interest (e.g.
mean) from samples.

▶ Example:
▶ Spin roulette wheel 1000 times.
▶ Observe 36 times green outcome

(95% CI boundary).
▶ Estimate 3.6% probability of

green.
▶ (Actual: 1

37 = 2.7%).

▶ Drawback: For improbable events,
many samples are needed.

3 / 23



Monte carlo simulation

▶ Draw samples from probability
distribution.

▶ Estimate property of interest (e.g.
mean) from samples.

▶ Example:
▶ Spin roulette wheel 1000 times.
▶ Observe 36 times green outcome

(95% CI boundary).
▶ Estimate 3.6% probability of

green.
▶ (Actual: 1

37 = 2.7%).
▶ Drawback: For improbable events,

many samples are needed.

3 / 23



Rare event simulation: Importance sampling

▶ To reduce required samples: Adjust probabilities and
compensate result (Change of Measure).

▶ Make rare events less rare.

▶ Example:
▶ Spin American roulette wheel

1000 times.
▶ Observe 65 times green outcome

(95% CI boundary).
▶ Estimate 6.5% probability of

green
in adjusted system.

▶ (Actual: 2
38 = 5.3%).

▶ Estimate 3.3% probability of
green
in original system.

▶ (Actual: 1
37 = 2.7%).

▶ Yields more accurate results and/or needs fewer samples.

4 / 23



Rare event simulation: Importance sampling

▶ To reduce required samples: Adjust probabilities and
compensate result (Change of Measure).

▶ Make rare events less rare.
▶ Example:

▶ Spin American roulette wheel
1000 times.

▶ Observe 65 times green outcome
(95% CI boundary).

▶ Estimate 6.5% probability of
green
in adjusted system.

▶ (Actual: 2
38 = 5.3%).

▶ Estimate 3.3% probability of
green
in original system.

▶ (Actual: 1
37 = 2.7%).

▶ Yields more accurate results and/or needs fewer samples.

4 / 23



Rare event simulation: Importance sampling

▶ To reduce required samples: Adjust probabilities and
compensate result (Change of Measure).

▶ Make rare events less rare.
▶ Example:

▶ Spin American roulette wheel
1000 times.

▶ Observe 65 times green outcome
(95% CI boundary).

▶ Estimate 6.5% probability of
green
in adjusted system.

▶ (Actual: 2
38 = 5.3%).

▶ Estimate 3.3% probability of
green
in original system.

▶ (Actual: 1
37 = 2.7%).

▶ Yields more accurate results and/or needs fewer samples.

4 / 23



Rare event simulation: Importance sampling

▶ To reduce required samples: Adjust probabilities and
compensate result (Change of Measure).

▶ Make rare events less rare.
▶ Example:

▶ Spin American roulette wheel
1000 times.

▶ Observe 65 times green outcome
(95% CI boundary).

▶ Estimate 6.5% probability of
green
in adjusted system.

▶ (Actual: 2
38 = 5.3%).

▶ Estimate 3.3% probability of
green
in original system.

▶ (Actual: 1
37 = 2.7%).

▶ Yields more accurate results and/or needs fewer samples.
4 / 23



Comparison of RES techniques

Importance Splitting Importance Sampling
Requires formalization of Requires specification of
importance ‘interesting’ rare transitions

Changes simulation engine Changes system under simulation
Good for rare events of many
steps

Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event
after only a few, low-probability transitions. Such models provide

few points to split the samples.

5 / 23



Comparison of RES techniques

Importance Splitting Importance Sampling
Requires formalization of Requires specification of
importance ‘interesting’ rare transitions
Changes simulation engine Changes system under simulation

Good for rare events of many
steps

Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event
after only a few, low-probability transitions. Such models provide

few points to split the samples.

5 / 23



Comparison of RES techniques

Importance Splitting Importance Sampling
Requires formalization of Requires specification of
importance ‘interesting’ rare transitions
Changes simulation engine Changes system under simulation
Good for rare events of many
steps

Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event
after only a few, low-probability transitions. Such models provide

few points to split the samples.

5 / 23



Comparison of RES techniques

Importance Splitting Importance Sampling
Requires formalization of Requires specification of
importance ‘interesting’ rare transitions
Changes simulation engine Changes system under simulation
Good for rare events of many
steps

Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event
after only a few, low-probability transitions. Such models provide

few points to split the samples.

5 / 23



Comparison of RES techniques

Importance Splitting Importance Sampling
Requires formalization of Requires specification of
importance ‘interesting’ rare transitions
Changes simulation engine Changes system under simulation
Good for rare events of many
steps

Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event
after only a few, low-probability transitions. Such models provide

few points to split the samples.

5 / 23



Importance sampling of Markov chains: an example

𝑠0

𝑠1

𝑠2

1%

99%

▶ Probability of red state?

▶ Estimate 1 (100 runs): 0%
▶ Estimate 2 (100 runs): 1%
▶ Estimate 3 (100 runs): 1%
▶ Estimate 4 (100 runs): 1%
▶ Estimate 5 (100 runs): 0%
▶ Estimate 6 (100 runs): 0%
▶ Estimate 7 (100 runs): 2%

6 / 23



Importance sampling of Markov chains: an example

𝑠0

𝑠1

𝑠2

1%

99%

▶ Probability of red state?
▶ Estimate 1 (100 runs): 0%

▶ Estimate 2 (100 runs): 1%
▶ Estimate 3 (100 runs): 1%
▶ Estimate 4 (100 runs): 1%
▶ Estimate 5 (100 runs): 0%
▶ Estimate 6 (100 runs): 0%
▶ Estimate 7 (100 runs): 2%

6 / 23



Importance sampling of Markov chains: an example

𝑠0

𝑠1

𝑠2

1%

99%

▶ Probability of red state?
▶ Estimate 1 (100 runs): 0%
▶ Estimate 2 (100 runs): 1%

▶ Estimate 3 (100 runs): 1%
▶ Estimate 4 (100 runs): 1%
▶ Estimate 5 (100 runs): 0%
▶ Estimate 6 (100 runs): 0%
▶ Estimate 7 (100 runs): 2%

6 / 23



Importance sampling of Markov chains: an example

𝑠0

𝑠1

𝑠2

1%

99%

▶ Probability of red state?
▶ Estimate 1 (100 runs): 0%
▶ Estimate 2 (100 runs): 1%
▶ Estimate 3 (100 runs): 1%
▶ Estimate 4 (100 runs): 1%
▶ Estimate 5 (100 runs): 0%
▶ Estimate 6 (100 runs): 0%
▶ Estimate 7 (100 runs): 2%

6 / 23



Importance sampling of Markov chains: an example

Make bad state 10 times more likely:

𝑠0

𝑠1

𝑠2

10% ×
1
10

90% × 99
90

▶ Probability of red state?

▶ Estimate 1 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 2 (100 runs): 15 ⋅ 1
10 = 1.5%

▶ Estimate 3 (100 runs): 6 ⋅ 1
10 = 0.6%

▶ Estimate 4 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 5 (100 runs): 13 ⋅ 1
10 = 1.3%

▶ Estimate 6 (100 runs): 8 ⋅ 1
10 = 0.8%

▶ Estimate 7 (100 runs): 14 ⋅ 1
10 = 1.4%

7 / 23



Importance sampling of Markov chains: an example

Make bad state 10 times more likely:

𝑠0

𝑠1

𝑠2

10% ×
1
10

90% × 99
90

▶ Probability of red state?
▶ Estimate 1 (100 runs): 10 ⋅ 1

10 = 1%

▶ Estimate 2 (100 runs): 15 ⋅ 1
10 = 1.5%

▶ Estimate 3 (100 runs): 6 ⋅ 1
10 = 0.6%

▶ Estimate 4 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 5 (100 runs): 13 ⋅ 1
10 = 1.3%

▶ Estimate 6 (100 runs): 8 ⋅ 1
10 = 0.8%

▶ Estimate 7 (100 runs): 14 ⋅ 1
10 = 1.4%

7 / 23



Importance sampling of Markov chains: an example

Make bad state 10 times more likely:

𝑠0

𝑠1

𝑠2

10% ×
1
10

90% × 99
90

▶ Probability of red state?
▶ Estimate 1 (100 runs): 10 ⋅ 1

10 = 1%
▶ Estimate 2 (100 runs): 15 ⋅ 1

10 = 1.5%

▶ Estimate 3 (100 runs): 6 ⋅ 1
10 = 0.6%

▶ Estimate 4 (100 runs): 10 ⋅ 1
10 = 1%

▶ Estimate 5 (100 runs): 13 ⋅ 1
10 = 1.3%

▶ Estimate 6 (100 runs): 8 ⋅ 1
10 = 0.8%

▶ Estimate 7 (100 runs): 14 ⋅ 1
10 = 1.4%

7 / 23



Importance sampling of Markov chains: an example

Make bad state 10 times more likely:

𝑠0

𝑠1

𝑠2

10% ×
1
10

90% × 99
90

▶ Probability of red state?
▶ Estimate 1 (100 runs): 10 ⋅ 1

10 = 1%
▶ Estimate 2 (100 runs): 15 ⋅ 1

10 = 1.5%
▶ Estimate 3 (100 runs): 6 ⋅ 1

10 = 0.6%
▶ Estimate 4 (100 runs): 10 ⋅ 1

10 = 1%
▶ Estimate 5 (100 runs): 13 ⋅ 1

10 = 1.3%
▶ Estimate 6 (100 runs): 8 ⋅ 1

10 = 0.8%
▶ Estimate 7 (100 runs): 14 ⋅ 1

10 = 1.4%

7 / 23



Importance sampling of CTMCs: overcompensating

Increasing the rare event too much:

𝑠0

𝑠1

𝜆𝑜𝑟𝑖𝑔 = 0.01, 𝜆𝐼𝑆 = 10
𝐶 = 𝑒Δ𝑡⋅0.01⋅(1000−1)

1000

▶ Probability of reaching red state
within 1 time unit?

▶ Estimate 1 (100 runs): 0.64%
▶ Estimate 2 (100 runs): 0.45%
▶ Estimate 3 (100 runs): 0.85%
▶ Estimate 4 (100 runs): 0.86%
▶ Estimate 6 (100 runs): 11.26%
▶ Estimate 7 (100 runs): 0.67%

8 / 23



Importance sampling of CTMCs: overcompensating

Increasing the rare event too much:

𝑠0

𝑠1

𝜆𝑜𝑟𝑖𝑔 = 0.01, 𝜆𝐼𝑆 = 10
𝐶 = 𝑒Δ𝑡⋅0.01⋅(1000−1)

1000

▶ Probability of reaching red state
within 1 time unit?

▶ Estimate 1 (100 runs): 0.64%
▶ Estimate 2 (100 runs): 0.45%
▶ Estimate 3 (100 runs): 0.85%
▶ Estimate 4 (100 runs): 0.86%

▶ Estimate 6 (100 runs): 11.26%
▶ Estimate 7 (100 runs): 0.67%

8 / 23



Importance sampling of CTMCs: overcompensating

Increasing the rare event too much:

𝑠0

𝑠1

𝜆𝑜𝑟𝑖𝑔 = 0.01, 𝜆𝐼𝑆 = 10
𝐶 = 𝑒Δ𝑡⋅0.01⋅(1000−1)

1000

▶ Probability of reaching red state
within 1 time unit?

▶ Estimate 1 (100 runs): 0.64%
▶ Estimate 2 (100 runs): 0.45%
▶ Estimate 3 (100 runs): 0.85%
▶ Estimate 4 (100 runs): 0.86%
▶ Estimate 6 (100 runs): 11.26%

▶ Estimate 7 (100 runs): 0.67%

8 / 23



Importance sampling of CTMCs: overcompensating

Increasing the rare event too much:

𝑠0

𝑠1

𝜆𝑜𝑟𝑖𝑔 = 0.01, 𝜆𝐼𝑆 = 10
𝐶 = 𝑒Δ𝑡⋅0.01⋅(1000−1)

1000

▶ Probability of reaching red state
within 1 time unit?

▶ Estimate 1 (100 runs): 0.64%
▶ Estimate 2 (100 runs): 0.45%
▶ Estimate 3 (100 runs): 0.85%
▶ Estimate 4 (100 runs): 0.86%
▶ Estimate 6 (100 runs): 11.26%
▶ Estimate 7 (100 runs): 0.67%

8 / 23



Path-ZVA algorithm

▶ Importance sampling algorithm for Markovian models.

▶ General concept:
▶ Identify shortest paths to goal state.
▶ Prioritize transitions following this (small part of) the state

space.
▶ Return to standard Monte Carlo simulation off the dominant

paths.
▶ Estimates:

▶ Probability of reaching goal states before reaching to taboo
states.

▶ Fraction of time spend in goal states for cyclic models.
▶ WIP: Time-bounded probability of reaching goal states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to
indicate ‘rareness’.

9 / 23



Path-ZVA algorithm

▶ Importance sampling algorithm for Markovian models.
▶ General concept:

▶ Identify shortest paths to goal state.
▶ Prioritize transitions following this (small part of) the state

space.
▶ Return to standard Monte Carlo simulation off the dominant

paths.

▶ Estimates:
▶ Probability of reaching goal states before reaching to taboo

states.
▶ Fraction of time spend in goal states for cyclic models.
▶ WIP: Time-bounded probability of reaching goal states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to
indicate ‘rareness’.

9 / 23



Path-ZVA algorithm

▶ Importance sampling algorithm for Markovian models.
▶ General concept:

▶ Identify shortest paths to goal state.
▶ Prioritize transitions following this (small part of) the state

space.
▶ Return to standard Monte Carlo simulation off the dominant

paths.
▶ Estimates:

▶ Probability of reaching goal states before reaching to taboo
states.

▶ Fraction of time spend in goal states for cyclic models.
▶ WIP: Time-bounded probability of reaching goal states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to
indicate ‘rareness’.

9 / 23



Path-ZVA algorithm

▶ Importance sampling algorithm for Markovian models.
▶ General concept:

▶ Identify shortest paths to goal state.
▶ Prioritize transitions following this (small part of) the state

space.
▶ Return to standard Monte Carlo simulation off the dominant

paths.
▶ Estimates:

▶ Probability of reaching goal states before reaching to taboo
states.

▶ Fraction of time spend in goal states for cyclic models.
▶ WIP: Time-bounded probability of reaching goal states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to
indicate ‘rareness’.

9 / 23



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.

▶ Path-ZVA stores the subset of states in dominant paths.
▶ All other states only generated as reached, and not stored.

𝑠3 𝑠0 𝑠1 𝑠2

𝑠4

𝜆 = 0.1 = 𝜖1

𝜆 = 1 = 𝜖0 𝜆 = 0.01 = 𝜖2

𝜆 = 1 = 𝜖0 𝜆 = 1 = 𝜖0

𝜆 = 0.02 = 2𝜖2

𝜆 = 0.0001 = 𝜖4

?

𝑑0 = 4 𝑑1 = 2 𝑑2 = 0𝑑3 = 4

10 / 23



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.
▶ Path-ZVA stores the subset of states in dominant paths.

▶ All other states only generated as reached, and not stored.

𝑠3 𝑠0 𝑠1 𝑠2

𝑠4

𝜆 = 0.1 = 𝜖1

𝜆 = 1 = 𝜖0 𝜆 = 0.01 = 𝜖2

𝜆 = 1 = 𝜖0 𝜆 = 1 = 𝜖0

𝜆 = 0.02 = 2𝜖2

𝜆 = 0.0001 = 𝜖4

?

𝑑0 = 4 𝑑1 = 2 𝑑2 = 0𝑑3 = 4

10 / 23



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.
▶ Path-ZVA stores the subset of states in dominant paths.
▶ All other states only generated as reached, and not stored.

𝑠3 𝑠0 𝑠1 𝑠2

𝑠4

𝜆 = 0.1 = 𝜖1

𝜆 = 1 = 𝜖0 𝜆 = 0.01 = 𝜖2

𝜆 = 1 = 𝜖0 𝜆 = 1 = 𝜖0

𝜆 = 0.02 = 2𝜖2

𝜆 = 0.0001 = 𝜖4

?

𝑑0 = 4 𝑑1 = 2 𝑑2 = 0𝑑3 = 4

10 / 23



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.
▶ Path-ZVA stores the subset of states in dominant paths.
▶ All other states only generated as reached, and not stored.

𝑠3 𝑠0 𝑠1 𝑠2

𝑠4

𝜆 = 0.1 = 𝜖1

𝜆 = 1 = 𝜖0 𝜆 = 0.01 = 𝜖2

𝜆 = 1 = 𝜖0 𝜆 = 1 = 𝜖0

𝜆 = 0.02 = 2𝜖2

𝜆 = 0.0001 = 𝜖4

?

𝑑0 = 4 𝑑1 = 2 𝑑2 = 0𝑑3 = 4

10 / 23



DFT example

Computer system failure

Workstation 1 failure Workstation 𝑛 failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

11 / 23



From I/O-IMCs to Markov Chains

▶ Path-ZVA requires (continuous-time) Markov chains.
▶ DFTCalc produces I/O-IMCs.

▶ How to resolve nondeterminism?
▶ Generally, the nondeterminism is spurious:

▶ Regardless of choices, you end up in the same Markovian state.
▶ We verify that it is spurious, then collapse the interactive

transitions before the next state:

𝑠0
𝜆

𝑠1

𝑠2

a

b
𝑠3

b

a

𝜇 𝑠3
𝜆 𝜇

12 / 23



From I/O-IMCs to Markov Chains

▶ Path-ZVA requires (continuous-time) Markov chains.
▶ DFTCalc produces I/O-IMCs.
▶ How to resolve nondeterminism?

▶ Generally, the nondeterminism is spurious:
▶ Regardless of choices, you end up in the same Markovian state.

▶ We verify that it is spurious, then collapse the interactive
transitions before the next state:

𝑠0
𝜆

𝑠1

𝑠2

a

b
𝑠3

b

a

𝜇 𝑠3
𝜆 𝜇

12 / 23



From I/O-IMCs to Markov Chains

▶ Path-ZVA requires (continuous-time) Markov chains.
▶ DFTCalc produces I/O-IMCs.
▶ How to resolve nondeterminism?
▶ Generally, the nondeterminism is spurious:

▶ Regardless of choices, you end up in the same Markovian state.

▶ We verify that it is spurious, then collapse the interactive
transitions before the next state:

𝑠0
𝜆

𝑠1

𝑠2

a

b
𝑠3

b

a

𝜇 𝑠3
𝜆 𝜇

12 / 23



From I/O-IMCs to Markov Chains

▶ Path-ZVA requires (continuous-time) Markov chains.
▶ DFTCalc produces I/O-IMCs.
▶ How to resolve nondeterminism?
▶ Generally, the nondeterminism is spurious:

▶ Regardless of choices, you end up in the same Markovian state.
▶ We verify that it is spurious, then collapse the interactive

transitions before the next state:

𝑠0
𝜆

𝑠1

𝑠2

a

b
𝑠3

b

a

𝜇 𝑠3
𝜆 𝜇

12 / 23



Results: Unavailability

Exact result for DFTCalc, 95% confidence for others:
Unavailability

N P DFTCalc FTRES MC

FT
P

P

1 1 2.18303 ⋅ 10−10 [2.182; 2.184] ⋅ 10−10 —
4 1 — [2.226; 2.232] ⋅ 10−10 —
1 2 1.76174 ⋅ 10−20 [1.761; 1.762] ⋅ 10−20 —
4 2 — [1.760; 1.763] ⋅ 10−20 —

H
EC

S

N k DFTCalc FTRES MC
1 1 4.12485 ⋅ 10−5 [4.124; 4.126] ⋅ 10−5 [4.079; 4.156] ⋅ 10−5

2 1 3.02469 ⋅ 10−9 [3.022; 3.026] ⋅ 10−9 [0; 9.040] ⋅ 10−9

2 2 8.24940 ⋅ 10−5 [8.247; 8.251] ⋅ 10−5 [8.218; 8.338] ⋅ 10−5

4 1 — [3.902; 4.364] ⋅ 10−17 —
4 2 — [1.239; 1.252] ⋅ 10−12 —
4 3 — [1.813; 1.818] ⋅ 10−8 [0; 8.352] ⋅ 10−9

4 4 — [1.648; 1.651] ⋅ 10−4 [1.621; 1.657] ⋅ 10−4

13 / 23



Overall results: State space

102
103
104
105
106
107
108

N
r.

of
st

at
es

st
or

ed

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc peak FTRESDFTCalc final

▶ FTRES always below DFTCalc maximal state space size.
▶ FTRES computes results where DFTCalc does not.

14 / 23



Overall results: Speed

101

102

103

104

Ti
m

e
(s

)

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc SMC DFTCalc gen. FTRES sim. FTRES search

▶ FTRes and MC spend a constant 10 mins. simulating.
▶ Simulation time mostly dominates state-space exploration.
▶ Several DFTCalc experiments ran longer than 24 hours.

15 / 23



WIP: Extending to time-bounded reachability

▶ Standard Path-ZVA leaves total exit rates unchanged.

▶ Two causes of rarity with time bounds:

𝑠0 𝑠1 𝑠2

1
1

1000

𝑠0 𝑠1 𝑠2

10−5

10−5

10−5

Rarity due to Rarity due to
relative probability exit rates

▶ Path-ZVA helps the first case, not the second.

16 / 23



WIP: Extending to time-bounded reachability

▶ Standard Path-ZVA leaves total exit rates unchanged.
▶ Two causes of rarity with time bounds:

𝑠0 𝑠1 𝑠2

1
1

1000

𝑠0 𝑠1 𝑠2

10−5

10−5

10−5

Rarity due to Rarity due to
relative probability exit rates

▶ Path-ZVA helps the first case, not the second.

16 / 23



WIP: Extending to time-bounded reachability

▶ Standard Path-ZVA leaves total exit rates unchanged.
▶ Two causes of rarity with time bounds:

𝑠0 𝑠1 𝑠2

1
1

1000

𝑠0 𝑠1 𝑠2

10−5

10−5

10−5

Rarity due to Rarity due to
relative probability exit rates

▶ Path-ZVA helps the first case, not the second.

16 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.
▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.
▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.
▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.
▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.

▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



WIP: Extending to time-bounded reachability

Various possible compensations for rate-caused rarity:
▶ Fixed acceleration: Multiply all exit rates by the same factor.

▶ Most intuitive approach.
▶ Choice of multiplier is not obvious.
▶ Bad multiplier can give misleading results.

▶ Conditioning or discrete time conversion: sample paths
ignoring time, then calculate goal probability of each path.

▶ Optimal variance for a given path-sampling scheme.
▶ Not particularly fast.

▶ Forcing : Sample transition times conditional on time bound.
▶ Pretty good performance in general.
▶ Guaranteed better than no forcing (sort of).
▶ Moderate loss of performance.

17 / 23



Preliminary results on time-bounded reachability

2 ⋅ 10−10

4 ⋅ 10−10

5 ⋅ 10−11

1 ⋅ 10−10

CI
wi

dt
h

FTPP-1-1, Time bound 1

None Accel.×2 Accel.×15 Forcing Conditioning

4 ⋅ 10−13

8 ⋅ 10−13

2 ⋅ 10−14

4 ⋅ 10−14

CI
wi

dt
h

100.000 traces 60 seconds

FTPP-1-1, Time bound 0.01

18 / 23



Preliminary results on time-bounded reachability

Results for FTPP-1-1, other models behave similarly:

Time Forcing CI width Simulation CI width
bound /conditioning 100.000 sims time 60s sim.
1 None 1.7 ⋅ 10−10 0.16 4.8 ⋅ 10−12

1 Accel. × 2 1.9 ⋅ 10−10 0.15 6.4 ⋅ 10−12

1 Accel. × 15 1.5 ⋅ 10−9 0.15 5.0 ⋅ 10−11

1 Forcing 1.4 ⋅ 10−10 0.60 1.2 ⋅ 10−11

1 Conditioning 1.0 ⋅ 10−10 70 1.3 ⋅ 10−10

0.01 None 2.1 ⋅ 10−12 0.05 3.1 ⋅ 10−14

0.01 Accel. × 2 9.8 ⋅ 10−13 0.08 1.7 ⋅ 10−14

0.01 Accel. × 15 1.5 ⋅ 10−13 0.07 2.9 ⋅ 10−15

0.01 Forcing 1.9 ⋅ 10−13 0.36 1.1 ⋅ 10−14

0.01 Conditioning 3.9 ⋅ 10−14 53 3.6 ⋅ 10−14

19 / 23



WIP: Extending to time-bounded reachability

Preliminary results:
▶ Conditioning is too slow to be practical.

▶ Usually better to spend the calculation time on more traces.

▶ Fixed acceleration good but fiddly.
▶ Good acceleration factors hard to determine in advance.
▶ Bad choices can result in biased-looking estimators.

▶ Forcing generally works well.
▶ Mostly independent of model rates and property.

20 / 23



WIP: Extending to time-bounded reachability

Preliminary results:
▶ Conditioning is too slow to be practical.

▶ Usually better to spend the calculation time on more traces.
▶ Fixed acceleration good but fiddly.

▶ Good acceleration factors hard to determine in advance.
▶ Bad choices can result in biased-looking estimators.

▶ Forcing generally works well.
▶ Mostly independent of model rates and property.

20 / 23



WIP: Extending to time-bounded reachability

Preliminary results:
▶ Conditioning is too slow to be practical.

▶ Usually better to spend the calculation time on more traces.
▶ Fixed acceleration good but fiddly.

▶ Good acceleration factors hard to determine in advance.
▶ Bad choices can result in biased-looking estimators.

▶ Forcing generally works well.
▶ Mostly independent of model rates and property.

20 / 23



Conclusions

▶ New (in fact, first) methods applying rare event simulation to
dynamic fault trees.

▶ On-the-fly composition avoids state-space explosion.
▶ Importance sampling provides tight confidence intervals even

for very rare events.
▶ We handle larger models than DFTCalc, and models of more

reliable systems than Monte Carlo simulation.
▶ Analysis of availability and reliability, with reliability still being

improved.

21 / 23



Conclusions

▶ New (in fact, first) methods applying rare event simulation to
dynamic fault trees.

▶ On-the-fly composition avoids state-space explosion.

▶ Importance sampling provides tight confidence intervals even
for very rare events.

▶ We handle larger models than DFTCalc, and models of more
reliable systems than Monte Carlo simulation.

▶ Analysis of availability and reliability, with reliability still being
improved.

21 / 23



Conclusions

▶ New (in fact, first) methods applying rare event simulation to
dynamic fault trees.

▶ On-the-fly composition avoids state-space explosion.
▶ Importance sampling provides tight confidence intervals even

for very rare events.

▶ We handle larger models than DFTCalc, and models of more
reliable systems than Monte Carlo simulation.

▶ Analysis of availability and reliability, with reliability still being
improved.

21 / 23



Conclusions

▶ New (in fact, first) methods applying rare event simulation to
dynamic fault trees.

▶ On-the-fly composition avoids state-space explosion.
▶ Importance sampling provides tight confidence intervals even

for very rare events.
▶ We handle larger models than DFTCalc, and models of more

reliable systems than Monte Carlo simulation.

▶ Analysis of availability and reliability, with reliability still being
improved.

21 / 23



Conclusions

▶ New (in fact, first) methods applying rare event simulation to
dynamic fault trees.

▶ On-the-fly composition avoids state-space explosion.
▶ Importance sampling provides tight confidence intervals even

for very rare events.
▶ We handle larger models than DFTCalc, and models of more

reliable systems than Monte Carlo simulation.
▶ Analysis of availability and reliability, with reliability still being

improved.

21 / 23



Future work

▶ Finish reliability analysis.

▶ Support for non-Markovian timing of e.g. maintenance
actions.

▶ Limited nondeterminism to cover full set of DFTs

22 / 23



Future work

▶ Finish reliability analysis.
▶ Support for non-Markovian timing of e.g. maintenance

actions.

▶ Limited nondeterminism to cover full set of DFTs

22 / 23



Future work

▶ Finish reliability analysis.
▶ Support for non-Markovian timing of e.g. maintenance

actions.
▶ Limited nondeterminism to cover full set of DFTs

22 / 23



Thank you for your attention.

Questions?

23 / 23


