
Part 1: Efficient Domain-Specific Tool
Development for UPPAAL via
Model-Driven Engineering

Stefano Schivo, Buğra Yildiz, Enno Ruijters,
Christopher Gerking, Rajesh Kumar, Stefan
Dziwok, Arend Rensink, and
Mariëlle Stoelinga
University of Twente
26 September 2017



Our contribution in a nutshell

▶ UPPAAL is a popular back-end model-checker.
▶ Used for network protocols, biology, battery-aware scheduling, etc.

▶ Front-end tools and translations are often developed ad-hoc.
▶ Difficult to debug, reuse, extend, etc.

▶ Model-driven engineering provides more structure for translations.
▶ Metamodels for different domains and UPPAAL.
▶ Specialized languages for transformations.

▶ Application of MDE improves development of front-end tools:
▶ Better interoperability
▶ Faster development
▶ Easier to maintain

2 / 25



Bridging tools

▶ Typical process:
▶ Input domain-specific

language (DSL)
▶ Translate to general-purpose

model (e.g. UPPAAL timed
automata)

▶ Run general-purpose analysis.
▶ Translate result back to

domain.

▶ Disadvantages of ad-hoc translations:
▶ General language (Java, etc.)
▶ Little/no documented structure of models.
▶ Closely tied to specific versions/features.

3 / 25



Benefits of MDE

▶ Interoperability
▶ Model transformations facilitate

combinations of domains and tools.

▶ Reusability
▶ Metamodels can be reused by different

tools in the same domain.
▶ Downstream transformations can be

reused across domains.

▶ Faster development
▶ Domain experts can focus on the

domain.
▶ Transformation and metamodeling

languages are specific-purpose.

▶ We present work in UPPAAL, this applies to your tool too :)

4 / 25



Model-Driven Development (MDE)

▶ Have models as first-class citizens.

▶ Metamodels provide syntax and documentation of models.

▶ Model transformations in purpose-specific languages (Epsilon, etc.)

▶ Validation/constraints help in debugging and documentation.

Source Model Target Model

Source Metamodel Target Metamodel

conforms to conforms to

Transformation

Definition

Transformation

Engine

maps from maps to

executes

input output

5 / 25



Model transformations

▶ Transform one (metamodel-described) model to another.

▶ Transformation languages have specific constructs for model concepts.

Source Model Target Model

Source Metamodel Target Metamodel

conforms to conforms to

Transformation

Definition

Transformation

Engine

maps from maps to

executes

input output

6 / 25



Model transformation: Example

rule Base
transform at : AFT!AttackTree to out : Uppaal!NTA

{
out.systemDecl = new Uppaal!SystemDeclarations();
out.systemDecl.system = new Uppaal!System();
for (node : AFT!Node in at.Nodes) {

var converted = node.equivalent();
out.template.add(converted.get(0));

}
...

}
rule andGate transform node : AFT!Node to ret : List
{

guard : node.nodeType.isKindOf(AFT!AND)
...

7 / 25



Metamodels

▶ Describe syntax of a class of

models.

▶ Object-oriented format

(classes, attributes, etc.)

▶ Shown in UML-like syntax.

▶ Concrete models are

instances of such a

metamodel.

NTA
name : String

Template
name : String

Location
name : String

Edge

Declarations

Declaration

templates global
system

local

declarationsedgeslocations incoming

outgoing

1..*

1..* 0..*

0..*

0..*

0..*
initial

Expression
invariant updates

0..*

1

1

8 / 25



MDE in the steps of a front-end tool

1 Domain expert produces domain-specific model in a metamodel.

2 Domain-specific model is transformed to timed automata

using a model transformation.

3 Property of interest is specified in domain-specific language

in a metamodel.

4 Property is translated to UPPAAL query using a model transformation.

5 UPPAAL checks query and possibly produces resulting trace.

6 Trace is transformed back to domain-specific representation and

presented supported by model transformations and metamodels.

9 / 25



UPPAAL metamodels: Timed automata

▶ System under analysis.

▶ Input to UPPAAL.

▶ Includes automatic

transformation to XML

files.

NTA
name : String

Template
name : String

Location
name : String

Edge

Declarations

Declaration

templates global
system

local

declarationsedgeslocations incoming

outgoing

1..*

1..* 0..*

0..*

0..*

0..*
initial

Expression
invariant updates

0..*

1

1

10 / 25



UPPAAL metamodels: Query

▶ TCTL-like language

▶ Includes transformation to

textual format.

▶ Linked to NTA for queries

on specific models.

UnaryProperty

quantifier : PathQuantifier = E
operator : TemporalOperator = <>
 expression : Expression

PathQuantifier

EXISTS
FORALL

TemporalOperator

FUTURE
GLOBAL

BinaryProperty

 leftExpression : Expression
 rightExpression : Expression

LeadsToProperty

DeadlockExpression Property

PropertyRepository

[0..*] properties

11 / 25



UPPAAL metamodels: Trace

▶ Counterexamples/witnesses produced by UPPAAL.

▶ Including parser for textual output.

▶ Links back to NTA for easy interpretation.

Trace

Transition

EdgeTransitionDelayTransition

delay : Float

transitionsstates

target

transitionTo

transitionFrom1

1..*
Location

Edge

edges

1..*

locations

State

name : String
valuations : Valuation [0..*] 
clocks : ClockBoundary [0..*] 
time : Float

1 source
0..*

12 / 25



Example tool: Synchrononous dataflow graphs (SDF)

▶ Hardware-software co-design for streaming applications.

▶ Inputs: SDF graphs, hardware platform model, allocation model.

▶ Transform to UPPAAL CORA to obtain cost-optimal trace.

▶ Transform trace to domain-specific Schedule metamodel.

▶ Present schedule to user.

im_read dupl_im integral haar_det
haar_scal 

x 11
haar_scal

haar_scal

haar_scal

haar_scal haar_scal

idle haar_scal

haar_scal haar_scal

idle haar_scal col_obj grp_rect

idleidle

idle

idle

haar_scal

haar_scal

haar_scal

haar_scal

haar_scal

haar_scal

idle

idleπ1

π2

π3

π4

time

13 / 25



Example tool: Attack/Fault Trees

▶ Converter and analyzer for many

variants of fault and attack trees.

▶ Originally only for ATs.
▶ MDE made it easy to extend to

FTs and combinations.

▶ Supports inputs from 4 different

tools.

▶ Outputs to 6 tools, not counting

three variants of UPPAAL.

▶ Key: Single unified metamodel for attack & fault trees.

14 / 25



Conclusions

▶ Model-driven engineering framework for front-end tools for UPPAAL.

▶ Metamodels and transformations provide structure.
▶ Easier to debug, extend, maintain, etc.

▶ Promotes reuse and interoperability between domains.

▶ Formals methods have helped software engineering, now let software

engineering help you!

▶ Metamodels available at

https://github.com/utwente-fmt/uppaal

15 / 25

https://github.com/utwente-fmt/uppaal


Part 2: Importance sampling for dynamic
fault trees

Enno Ruijters, Daniël Reijsbergen,
Pieter-Tjerk de Boer, and Mariëlle Stoelinga
University of Twente
26 September 2017



Our contribution in a nutshell

▶ Many frameworks can provide quantitative dependability analysis.
▶ We use dynamic fault trees.
▶ Compute system availability, reliability, MTTF, etc.

▶ Complex systems are computationally difficult to analyze:
▶ Complex → analytic approaches are memory-intensive.
▶ Rare failures → Monte Carlo simulation requires many samples.

▶ Our solution: rare event simulation (through importance sampling)
▶ Make rare events more likely.
▶ Compensate the final result.
▶ Automatically.

▶ Rare event simulation + dynamic fault trees → Faster/more accurate
fault tree simulation.

17 / 25



Comparison of RES techniques

Splitting Sampling
Requires formalization of distance Requires specification of ‘rare’ transitions

Changes simulation engine Changes system under simulation

Good for rare events of many steps Good for rare event of few steps

Limit case: fewer runs needed Limit case: only one run needed

We use importance sampling as our system reaches the rare event after only a

few, low-probability transitions. Such models provide few points to split the

samples.

18 / 25



DFT example

Computer system failure

Workstation 1 failure Workstation 𝑛 failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

19 / 25



Path-ZVA algorithm

▶ Importance sampling algorithm for cyclic Markovian models.

▶ Divides states into three categories:
▶ ‘Perfect’ states reached frequently.
▶ ‘Bad’ states reached rarely.
▶ ‘Connecting’ states inbetween.

▶ Estimates:
▶ Probability of reaching ‘bad’ states before returning to ‘perfect’ states.
▶ Fraction of time spend in ‘bad’ states.

▶ Transition rates parameterized as 𝑟 ⋅ 𝜖𝑛 with 0 < 𝜖 << 1 to indicate

‘rareness’.

20 / 25



Applying Path-ZVA to DFTs

▶ Basic idea: Compute state space on-the-fly.

▶ Path-ZVA stores the subset of states in dominant paths.

▶ All other states only generated as reached, and not stored.

𝑠0 𝑠1 𝑠2 𝑠3𝑠4

𝜆 = 3𝜖2
𝜆 = 2𝜖1 𝜆 = 2𝜖1

𝜆 = 𝜖0

𝜆 = 𝜖0

𝜆 = 𝜖0

𝜆 = 2𝜖1

𝜆 = 𝜖0

21 / 25



Results: Accuracy

Exact result for DFTCalc, 95% confidence for others:
Unavailability

N P DFTCalc FTRES MC

FT
PP

1 1 2.18303 ⋅ 10−10 [2.182; 2.184] ⋅ 10−10 –

4 1 2.22979 ⋅ 10−10 [2.229; 2.230] ⋅ 10−10 [0; 2.140] ⋅ 10−8

1 2 1.76174 ⋅ 10−20 [1.761; 1.763] ⋅ 10−20 –

4 2 – [1.257; 2.553] ⋅ 10−20 –

H
EC

S

N k DFTCalc FTRES MC

1 1 4.12485 ⋅ 10−5 [4.118; 4.149] ⋅ 10−5 [2.615; 10.64] ⋅ 10−5

2 1 – [3.010; 3.061] ⋅ 10−9 –

2 2 – [8.230; 8.359] ⋅ 10−5 [0; 1.734] ⋅ 10−4

4 1 – [1.328; 8.213] ⋅ 10−17 –

4 2 – [1.145; 1.270] ⋅ 10−12 –

4 3 – [1.744; 1.817] ⋅ 10−8 –

4 4 – [1.609; 1.667] ⋅ 10−4 –

22 / 25



Overall results: State space

102

103

104

105

106

107

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

N
r. 

of
 s

ta
te

s 
st

or
ed

Railway cabinets HEPC

DFTCalc max.
FTRES

DFTCalc final

FTPP
=k
=N

▶ FTRES always below DFTCalc maximal state space size.

▶ FTRES computes results where DFTCalc does not.

23 / 25



Overall results: Speed

100

101

102

103

104

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

Ti
m

e 
(s

)

Railway cabinets HECS
=k

DFTCalc
FTRES

=N

FTPP

▶ FTRes and MC spend a constant 5 mins. simulating.

▶ Simulation time mostly dominates state-space exploration.

▶ Almost all DFTCalc experiments for HECS ran out of memory.
24 / 25



Thank you for your attention.

Questions?

25 / 25


	Introduction

