The state of the art in fault tree modeling and analysis

Enno Ruijters

November 5, 2014

・ロト ・回ト ・ヨト ・ヨト

3

Outline

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- **5** DFT analysis
- 6 Maintenance

1 Introduction

- Pault tree analysis
- 3 FT extensions
- Oynamic fault trees
- DFT analysis
- 6 Maintenance

About me

- Enno Ruijters
- PhD Student at University of Twente (Formal Methods and Tools)
- ArRangeer project
 - ProRail / STW
 - Improving railroad maintenance using Dynamic Fault Trees and Stochastic Model Checking

イロト イポト イヨト イヨト

3

Introduction to fault trees

• Developed in 1961 by Nuclear Regulatory Agency

・ロト ・回ト ・ヨト ・ヨト

3

- Question: How reliable is your system?
- Now used by:

Introduction to fault trees

- Developed in 1961 by Nuclear Regulatory Agency
- Question: How reliable is your system?
- Now used by:

イロト イポト イヨト イヨト

Why fault trees?

- Some things really should not fail
- Risk assessment is sometimes mandatory
 - Probability of catastrophic failures?

イロト イポト イヨト イヨト

3

- Biggest risk factors?
- Possible mitigations?

Why fault trees?

• Some things really should not fail Reliability Probability of failing within given time

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ ()
7/55

Why fault trees?

 Some things really should not fail Reliability Probability of failing within given time Availability Proportion of time in functioning state

What do we want to know?

Qualitative:

- Insight into biggest risks
- Relatively fast to perform
- Easy to understand
- Limited information

Quantitative:

- Quantify total risk
- Quantify effect of mitigation
- Time consuming
- Hard to estimate numbers

-

What to we want to know?

Quantitative:

 Reliability = Probability of failure within time t Example: Probability of containment failure within 25 year nuclear plant lifetime

What to we want to know?

Quantitative:

- Reliability = Probability of failure within time t Example: Probability of containment failure within 25 year nuclear plant lifetime
- Availability \equiv Proportion of time (in $[0,\infty)$ or [0,t]) spent not failed

Example: Amazon EC2 cloud offers SLA of 99.95% uptime

What to we want to know?

Quantitative:

- Reliability = Probability of failure within time t Example: Probability of containment failure within 25 year nuclear plant lifetime
- Availability ≡ Proportion of time (in [0,∞) or [0, t]) spent not failed
 Example: Amazon EC2 cloud offers SLA of 99.95% uptime
- MTBF = Expected time between two successive failures (in finite or infinite horizon)
 Example: How frequently will my car break down?
- Others (MTTF, ENF, etc.)

Outline

Introduction

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- DFT analysis
- 6 Maintenance

Fault tree example

- Redundant CPUs
- 1 shared spare memory unit

Example of fault tree failure propagation

• Failure of M1

≣ • ০ ৭ ে 14 / 55

Example of fault tree failure propagation

- Failure of M1
- Failure of C1

- Failure of M1
- Failure of C1

- Failure of M1
- Failure of C1
- Failure of M2

- Failure of M1
- Failure of C1
- Failure of M2

- Failure of M1
- Failure of C1
- Failure of M2

Fault tree types

Model	Reliability	Availability	MTTFF	MTTF	MTBF	MTTR	ENF
Discrete-time	+						+
Continuous-time	+	+	+				+
Repairable conttime	+	+	+	+	+	+	+

Table: Applicability of stochastic measures to different FT types

Quantitative analysis of static fault trees

Method	Reliability	Availability	MTBF	Exact	Speed	Computable
Bottom-up method	+	+		2	+	+
Rare-event approximation	+	+		-	+	+
Bayesian networks	+	+		+	-	+
Monte Carlo Simulation	+	+	+	-	-	+
Algebraic analysis	+	+	+	+	-	\sim
Algebraic approximation	+	+	+	-	+	+

Table: Quantitative analysis for static fault trees

Outline

Introduction

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- **DFT** analysis
- 6 Maintenance

Fuzzy numbers

- Uncertainty and variation in BE probabilities
- Expert judgement not exact
- Possible solution: BE probabilities in fuzzy sets
- Several frameworks for computations on fuzzy numbers
- Can compute same measures as for non-fuzzy FTs.

Other uncertain FTs

• 'Intuitionistic fuzzy set theory': Membership function uncertain

イロト 不同下 イヨト イヨト

3

- Probability distribution for BE failure rates
- Multi-state BE with uncertain states
- Normal distribution approximation

FTs with dependent events

- Normal FTs assume independent BEs
- Not always realistic ('valve stuck open' and 'valve stuck closed' are not independent)

(日) (同) (三) (三)

3

25 / 55

• Component failures and degradation may propagate

Dependent event extensions

- Specifying mutually exclusive events
- Extended FTs
- Multiple FTs for different failure modes

(日) (同) (三) (三)

3

- Replace BEs by Petri nets
- Boolean Driven Markov Processes

Repairable fault trees

- Simple repair model: Simultaneous independent repairs
- Problem: Limited resources for repairs in real life
- Problem: Hidden failures
- Solution method: Repairable Fault Trees
- Add repair boxes that specify when to repair what

Fault trees with temporal properties

• Static FTs do not consider timing information

イロン イヨン イヨン イヨン

3

- Phased systems
- Delays
- Failure sequences

Outline

Introduction

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- 5 DFT analysis
- 6 Maintenance

Shortcomings of fault trees

- No information about failure sequences
- Poor modeling of shared spare components
- Dependencies cause large trees
- One solution: Dynamic fault trees (DFTs)

イロト イポト イヨト イヨト

Dynamic fault trees

Three new gates:

DFT Example

・ロ ・ ・ 一部 ・ ・ 注 ト ・ 注 ・ う え (*) 36 / 55

DFT Example

DFT Example

DFT Example

DFT Example

Outline

Introduction

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- 5 DFT analysis
 - 6 Maintenance

Quantitative analysis of dynamic fault trees

Method	Reliability	Availability	MTBF	Exact	Deterministic	Speed
Markov Chains	+	+		+	~	-
I/O IMC	+	+		+		+
Petri Nets	+	+		+	\sim	+
Dynamic Bayesian Networks	+	+		-	\sim	-
Monte Carlo Simulation	+	+	+	-		-
Algebraic analysis	+	+	+	+		-

Table: Quantitative analysis for dynamic fault trees, (=)

DFT analysis: Markov chain

Analysis by markov chain:

DFT analysis: Markov chain

Advantages:

- Exact semantics
- No nondeterminacy
- Reuse of existing modelcheckers (PRISM, etc.)

DFT analysis: Markov chain

Advantages:

- Exact semantics
- No nondeterminacy
- Reuse of existing modelcheckers (PRISM, etc.)

Disadvantages:

- Semantics are ca. 20 pages long
- Combinatorial explosion

DFT analysis: Compositional Markov Analysis

- Input/Output Interactive Markov Chains exist of gates and basic events
- Input/Output signals allow parallel composition
- Models of FT elements are composed into one large model

DFT analysis: I/O IMC example

DFT analysis: Compositional Markov Analysis

Advantages:

- Semantics easier to understand
- Intermediate minimization reduces state-space explosion

(日) (同) (三) (三)

- Easy to add new gates or events
- Can model nondeterminacy

DFT analysis: Compositional Markov Analysis

Advantages:

- Semantics easier to understand
- Intermediate minimization reduces state-space explosion
- Easy to add new gates or events
- Can model nondeterminacy

Disadvantages:

- Still has state-space explosion
- Nondeterminacy

Outline

Introduction

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- 5 DFT analysis

Importance of maintenance

Importance of maintenance

・ロ ・ ・ 一 ・ ・ 三 ト ・ 三 ト ・ 三 ・ つ Q (~ 49 / 55

・ロト ・回ト ・ヨト ・ヨト

3

50 / 55

When to do maintenance

- Preventive maintenance
- Corrective maintenance

イロト イポト イヨト イヨト

3

51/55

Effect of maintenance

On component:

- 'As good as new' replacement
 - example: Replace battery
- Reduced failure rate
 - example: Oil change

Effect of maintenance on system

Positive:

- Correct failure (corrective)
- Reduce failure rate (preventive)

3

52 / 55

Effect of maintenance on system

Positive:

- Correct failure (corrective)
- Reduce failure rate (preventive)

Negative:

- Cost
- Downtime

Maintenance strategy

• What maintenance actions to do on which components?

イロト 不得下 イヨト イヨト 二日

- When to perform preventive maintenance?
 - Type of schedule (clock based, etc.)
 - Frequency
- How to react to failures?

Project goal

Outline

- 2 Fault tree analysis
- 3 FT extensions
- Oynamic fault trees
- **5** DFT analysis
- 6 Maintenance