Better railway engineering through statistical model checking

Enno Ruijters and Mariëlle Stoelinga

10 October 2016

UNIVERSITY OF TWENTE.

Outline

Introduction

- Maintenance
- Fault Trees
- Model checking

2 Fault maintenance trees

- Modeling
- Analysis
- 3 Case study
 - Electrically insulated joint
 - Pneumatic compressor

Conclusions

Do you think flying is safe?

10000 0 00

Do you think flying is safe?

In an airplane unmaintained for a decade?

-

- Dependability of many systems is critical.
 - Airplanes

11 1110110110111

10000 1 10

- Dependability of many systems is critical.
 - Airplanes
 - Nuclear power stations

11 1110110110111

10000 1 10

• Dependability of many systems is critical.

- Airplanes
- Nuclear power stations
- Medical devices

11 1111111111111

10000 1 10

• Dependability of many systems is critical.

- Airplanes
- Nuclear power stations
- Medical devices

• Traditional focus on design for dependability.

11 111011011111

1 0000 0 00

- Dependability of many systems is critical.
 - Airplanes
 - Nuclear power stations
 - Medical devices
- Traditional focus on design for dependability.
- Even very reliable systems need maintenance.

11 11101101111

1000 0 10

Maintenance

• Crucial: Large impact on reliability, availability, life span.

11 11101101111

1 0000 0 00

Maintenance

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Maintenance

- Crucial: Large impact on reliability, availability, life span.
- **Costly:** Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

Maintenance

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

11111111

Maintenance

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Support decision making to optimize maintenance plans.

11111111

Case studies

Two case studies:

Case studies

Two case studies:

El-Joint

- Important cause of train service disruptions.
- Result: Cost-optimization of maintenance

Case studies

Two case studies:

El-Joint

- Important cause of train service disruptions.
- Result: Cost-optimization of maintenance

Pneumatic compressor

- Powers brakes, doors, etc., fail-safe but source of disruptions.
- Result: Reliability analysis.

Fault maintenance trees (FMTs): 3 key ingredients

Maintenance

Fault Trees

Model Checking

FMT goals:

- What is the effect of maintenance on system performance:
 - Reliability, availability, # of failures per year?
- Can we do better (lower costs / better performance)?

Model checking brings modularity and flexibility.

Types:

• Corrective maintenance:

Types:

- Corrective maintenance:
- Preventive maintenance

Types:

- Corrective maintenance:
- Preventive maintenance

Strategies:

Age-based

Types:

- Corrective maintenance:
- Preventive maintenance

Strategies:

- Age-based
- Use-based

Types:

- Corrective maintenance:
- Preventive maintenance

Strategies:

- Age-based
- Use-based
- Condition-based

Industry standard tool for reliability analysis

 How do component failures propagate to system failures?

Industry standard tool for reliability analysis

- How do component failures propagate to system failures?
- Used by NASA, ESA, Boeing, ...

• Using Uppaal-SMC

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results
 - Not (currently) suitable for very rare events.

Putting it all together

Summary of our approach:

- Combine maintenance planning into fault trees.
- Compositional conversion into (P)STA.
- Analysis via statistical model checking.
- Results on system reliability, availability, etc.

Outline

Introduction

- Maintenance
- Fault Trees
- Model checking

2 Fault maintenance trees

- Modeling
- Analysis
- 3 Case study
 - Electrically insulated joint
 - Pneumatic compressor

Conclusions

• Industry-standard tool for reliability analysis

- Industry-standard tool for reliability analysis
- Describe combinations of faults leading to failures

Images of the elements in a fault (maintenance) tree

- Industry-standard tool for reliability analysis
- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine

Images of the elements in a fault (maintenance) tree
Fault tree of pneumatic compressor

Maintenance plan describes behaviour of leaves.

- Many failures are not exponentially distributed random events.
 - Wear over time

• Many failures are not exponentially distributed random events.

- Wear over time
- Production faults

• Many failures are not exponentially distributed random events.

- Wear over time
- Production faults
- Caused by other failures

• Many failures are not exponentially distributed random events.

- Wear over time
- Production faults
- Caused by other failures

• Maintenance is essential for reliability.

• Reduce or prevent wear

• Many failures are not exponentially distributed random events.

- Wear over time
- Production faults
- Caused by other failures

• Maintenance is essential for reliability.

- Reduce or prevent wear
- Replace or repair worn components

• Many failures are not exponentially distributed random events.

- Wear over time
- Production faults
- Caused by other failures

• Maintenance is essential for reliability.

- Reduce or prevent wear
- Replace or repair worn components
- Correct failures when they occur

Many failures are not exponentially distributed random events.

- Wear over time
- Production faults
- Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
 - Replace or repair worn components
 - Correct failures when they occur

• Maintenance is not explicitly modeled in standard fault trees, despite its critical effect on dependability.

Fault Maintenance Trees:

• Combine maintenance into fault trees.

- Combine maintenance into fault trees.
- Basic events include degradation over time.

- Combine maintenance into fault trees.
- Basic events include degradation over time.
- Degradation of one component can affect other components.

- Combine maintenance into fault trees.
- Basic events include degradation over time.
- Degradation of one component can affect other components.
- Repair modules remove degradation (periodically or condition-based)

- Combine maintenance into fault trees.
- Basic events include degradation over time.
- Degradation of one component can affect other components.
- Repair modules remove degradation (periodically or condition-based)
- Inspection modules periodically check degradation and activate repairs if needed.

- Degradation modeled in distinct phases.
- Stochastic timed automaton:

Modelling BEs

- Timed automata with degradation stages.
- Signals for composition:
 - Maintenance threshold
 - Repair
 - Failure
- Other modules will send/receive these signals.

• Some failures accelerate wear of other components.

- Some failures accelerate wear of other components.
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .

- Some failures accelerate wear of other components.
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .
- Repair of trigger BE does not repair triggered BE.

- Some failures accelerate wear of other components.
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .
- Repair of trigger BE does not repair triggered BE.
- Timed automaton of triggered BE:

Repair module:

- Periodically start repairs (optional)
- Inspection may trigger repairs early

Inspection module:

- Periodically perform inspection
- If threshold reached: Start repair
- Otherwise: Do nothing

Outline

Introduction

- Maintenance
- Fault Trees
- Model checking

Fault maintenance trees

- Modeling
- Analysis

- Electrically insulated joint
- Pneumatic compressor

Conclusions

Case study: Electrically insulated joint

Case study: Electrically insulated joint

- Collaboration with ProRail (Dutch railway asset management company).
- Electrically separates section of track.
- Important cause of train service disruptions.
- **Result:** Cost-optimal maintenance strategy.

Case study

Obtaining quantitative parameters:

• Follow FMEA ProRail.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.
- Most failures only occur in a subset of joints.
 - E.g. failures from steel shavings occur only in curved track.

ETTF degrading BEs:

Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.

ETTF degrading BEs:

Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.

ETTF degrading BEs:

Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.

ETTF degrading BEs:

Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.

ETTF exponential failures (logarithmic scale):

Joint shorted: splinters (11) Joint shorted: foreign object (12) Joint shorted: shavings (grinding) (13) Damage due to maintenance (14) Internal low resistance (15)

•	- ,
11):	200
12):	250
13):	5000
14):	5000
15):	250 250 5000 5000 2500
10):	2500

Analysis results

Results are averages of 40,000 simulations.
95% Confidence window: width less than 1%.
Computation time: Approx. 200 CPU-hours.
Scales omitted for confidentiality.

Analysis results: unreliability

Case study: Pneumatic compressor

- Powers brakes, doors, etc.
- Fail-safe but failures cause disruptions.
- Maintenance is essential for normal operation.
- Result: Analysis of maintenance effectiveness.

Failure modes

Motor does not start when asked (1): De-aeration valve defective (2): Two starts in short time (3): Radiator obstructed (4): Oil thermostat defective (5): Low oil level (6): Pressure valve leakage (7): Air filter obstructed (8): Degraded air filter (9): Particle-induced damage (10): Oil pollution (11): 5.5 Lubrication-induced wear (12): Motor/bearings degraded (13): Oil fine filter full (14): Degraded capacity (15): 10

- Bars show MTTF (years, logarithmic), whiskers show std. deviation
- Estimates from maintenance engineers, system experts.
- Experiment reports from simulation environment.

Failure modes

Motor does not start when asked (1): De-aeration valve defective (2): Two starts in short time (3): Radiator obstructed (4): Oil thermostat defective (5): Low oil level (6): Pressure valve leakage (7): Air filter obstructed (8): Degraded air filter (9): Particle-induced damage (10): Oil pollution (11): 5.5 Lubrication-induced wear (12): Motor/bearings degraded (13): Oil fine filter full (14): Degraded capacity (15): 10

- Bars show MTTF (years, logarithmic), whiskers show std. deviation
- Estimates from maintenance engineers, system experts.
- Experiment reports from simulation environment.

Maintenance actions:

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

Phase

2

2

Action

S1

01

Result

1

1

BE

Maintenance act

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

BE Phase		Action	Result	
1	2	S1	1	
1	2	01	1	
2	2	01	1	
3	2	Any	1	

Maintenance actions:

- **11**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

ΒE	Phase	Action	Resu	
1	2	S1	1	
1	2	01	1	
2	2	01	1	
3	2	Any	1	
4	3	S1	2	
4	Any	01	1	
5	2	S1	02	

Maintenance actions:

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

BE	Phase	Action	Result	Maintenance actions:
1	2	S1	1	
1	2	01	1	• 11 : Bi-daily visual inspection
2	2	01	1	(oil leaks,)
3	2	Any	1	• S1 : Three-monthly service
4	3	S1	2	(test pressure, replace filters,)
4	Any	01	1	• S2: Nine-monthly service
5	2	S1	02	
5	2	01	1	(like S1, also replace oil,)
6	Any	S1	1/200	• O1 : Minor overhaul
6	Any	01	1	(disassemble, replace worn
7	2	11	1	parts,)
7	2	S1	1	
8	Any	S1	1	• O2: Major overhaul
8	Any	01	1	(return to as-good-as-new)

Analysis results: failure causes

		All failı	ires			
	No operation		Reduced capacity			
1	4	5		10	12	13
		0	the o op			Other red. ca

- Failure mode 4 (radiator obstructed) major cause of disruptions.
- Many failure modes rarely occur.

• Validation: Predictions are close to reality.

Analysis results: Varying maintenance interval

- Reliability heavily depends on maintenance interval.
- With costs, optimal inspection interval can be found.

Analysis results: Overhauls

- Scheduled overhauls do not appear to have much effect.
- Costs are confidential, but overhauls are probably not cost-effective.

Conclusions on the compressor

• Number of failures in current maintenance policy agrees with reality.

Conclusions on the compressor

Number of failures in current maintenance policy agrees with reality.
Frequency of minor service has major influence on reliability.

Conclusions on the compressor

Number of failures in current maintenance policy agrees with reality.
Frequency of minor service has major influence on reliability.
Periodic overhauls do not appear very significant.

Outline

Introduction

- Maintenance
- Fault Trees
- Model checking

Fault maintenance trees

- Modeling
- Analysis
- 3 Case study
 - Electrically insulated joint
 - Pneumatic compressor

Conclusions

• FMTs integrates maintenance in fault trees.

• FMTs integrates maintenance in fault trees.

• FT and maintenance plan can be separately developed.

- FMTs integrates maintenance in fault trees.
 - FT and maintenance plan can be separately developed.
- Useful decision support tool to compare dependability characteristics under different maintenance strategies.

• FMTs integrates maintenance in fault trees.

- FT and maintenance plan can be separately developed.
- Useful decision support tool to compare dependability characteristics under different maintenance strategies.
- Demonstration FMTs in collaboration with ProRail and NedTrain.
 - Applicable in practice.

FMTs integrates maintenance in fault trees.

- FT and maintenance plan can be separately developed.
- Useful decision support tool to compare dependability characteristics under different maintenance strategies.
- Demonstration FMTs in collaboration with ProRail and NedTrain.
 - Applicable in practice.

Future work:

• Replacing phased degradation by a continuous model (SHA).