Reliability-centered maintenance via fault tree analysis: Combining fault trees, maintenance, and statistical model checking

Enno Ruijters, Dennis Guck, Mariëlle Stoelinga, Peter Drolenga, Martijn van Noort

8 March 2017

- Fault maintenance trees
- 3 Case studies

- Some things really should not fail
- Risk assessment is sometimes mandatory

Importance of maintenance

• Even very reliable systems need maintenance

By timing:

- Preventive maintenance
 - Periodic repair/replacement
 - Inspection

Types of maintenance

By timing:

- Preventive maintenance
 - Periodic repair/replacement
 - Inspection
- Corrective maintenance

Types of maintenance

By timing:

- Preventive maintenance
 - Periodic repair/replacement
 - Inspection
- Corrective maintenance

By result:

- 'As good as new' replacement
 - example: Replace battery

Types of maintenance

By timing:

- Preventive maintenance
 - Periodic repair/replacement
 - Inspection
- Corrective maintenance

By result:

- 'As good as new' replacement
 - example: Replace battery
- Reduced failure rate
 - example: Oil change

• What maintenance actions to do on which components?

• What to look for in inspections

• What maintenance actions to do on which components?

- What to look for in inspections
- What actions to take (repair/replace)

- What maintenance actions to do on which components?
 - What to look for in inspections
 - What actions to take (repair/replace)
- When to perform preventive maintenance?
 - Time-based, use-based, etc.

- What maintenance actions to do on which components?
 - What to look for in inspections
 - What actions to take (repair/replace)
- When to perform preventive maintenance?
 - Time-based, use-based, etc.
 - Frequency of maintenance actions

- What maintenance actions to do on which components?
 - What to look for in inspections
 - What actions to take (repair/replace)
- When to perform preventive maintenance?
 - Time-based, use-based, etc.
 - Frequency of maintenance actions
- How to react to failures?

 Reliability ≡ Probability of failure within time t Example: Probability of containment failure within 25 year nuclear plant lifetime

- Availability ≡ Proportion of time (in [0,∞) or [0, t]) spent not failed Example: Amazon EC2 cloud offers SLA of 99.95% uptime

- Availability ≡ Proportion of time (in [0,∞) or [0, t]) spent not failed Example: Amazon EC2 cloud offers SLA of 99.95% uptime
- Expected nr. of failures = Expected number of times a failure occurs within some timeframe *Example*: How frequently will my car break down?

- Availability ≡ Proportion of time (in [0,∞) or [0, t]) spent not failed Example: Amazon EC2 cloud offers SLA of 99.95% uptime
- Expected nr. of failures = Expected number of times a failure occurs within some timeframe
 Example: How frequently will my car break down?
- Costs of failures and repairs
- Others (MTBF, etc.)

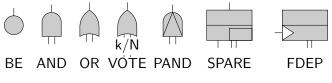
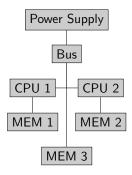
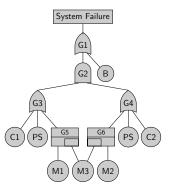
2 Fault maintenance trees

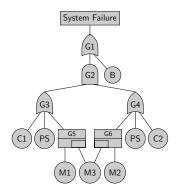
3 Case studies

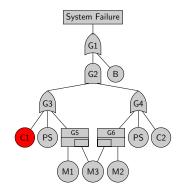
- Developed in 1961 by Nuclear Regulatory Agency
- Question: How reliable is your system?

- Developed in 1961 by Nuclear Regulatory Agency
- Question: How reliable is your system?
- Now used by:

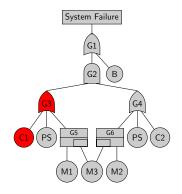
- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine

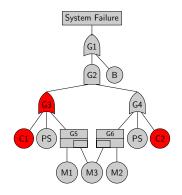




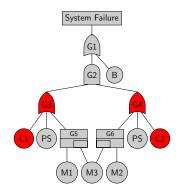

Figure: Images of the elements in a dynamic fault tree

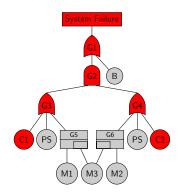


- Redundant CPUs
- 1 shared spare memory unit


No failures


• Failure of C1


• Failure of C1


- Failure of C1
- Failure of C2

- Failure of C1
- Failure of C2

- Failure of C1
- Failure of C2

• Obtain reliability, availability, etc.

• Obtain reliability, availability, etc.

Limitations:

• External variables (e.g. temperature)

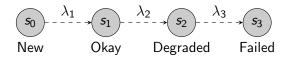
• Obtain reliability, availability, etc.

Limitations:

- External variables (e.g. temperature)
- Use measures (e.g. total time / duration of use)

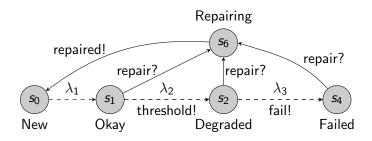
• Obtain reliability, availability, etc.

Limitations:


- External variables (e.g. temperature)
- Use measures (e.g. total time / duration of use)
- Assumption: Failure rates are fixed

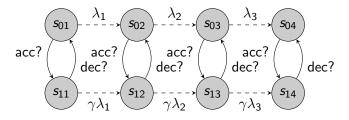
- Fully functional
- Degraded
- Failed

- Fully functional
- Degraded
- Failed
- Model non-exponential distributions

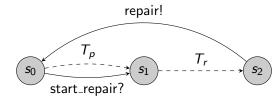

- Fully functional
- Degraded
- Failed
- Model non-exponential distributions
- Inspections respond to different states

- Fully functional
- Degraded
- Failed
- Model non-exponential distributions
- Inspections respond to different states
- Example:

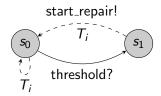
Modelling BEs


- Signals for composition:
 - Maintenance threshold
 - Repair
 - Failure
- Other models will send/receive these signals

• Some failures accelerate wear of other components.


- Some failures accelerate wear of other components.
- New type of gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .

- Some failures accelerate wear of other components.
- New type of gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .
- Repair of trigger BE does not repair triggered BE.


Repair module:

- Periodically start repairs (optional)
- Inspection may trigger repairs early

Inspection module:

- Periodically perform inspection
- If threshold reached: Start repair
- Otherwise: Do nothing

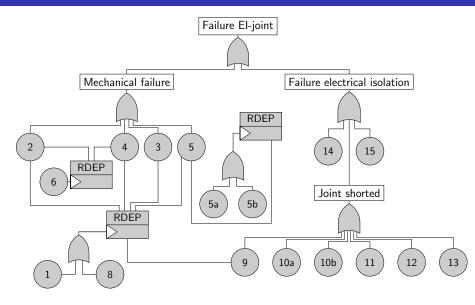

- Currently using statistical model checking (Uppaal-smc)
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions

- Currently using statistical model checking (Uppaal-smc)
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
- Disadvantages:
 - Inexact results
 - Speed

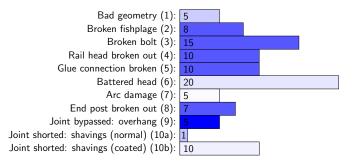
- Currently using statistical model checking (Uppaal-smc)
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
- Disadvantages:
 - Inexact results
 - Speed
- Past/Future: Input/Output Markov Reward Automata

Fault maintenance trees

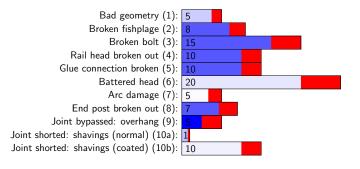
Case study: Electrically insulated joint



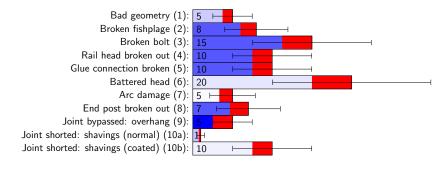
Case study: Electrically insulated joint


- Collaboration with ProRail (Dutch railway asset management company).
- Electrically separates section of track.
- Important cause of train service disruptions.
- **Result:** Cost-optimal maintenance strategy.

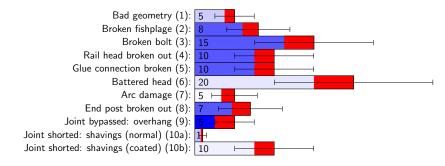
Case study


ETTF degrading BEs:

Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.


ETTF degrading BEs:

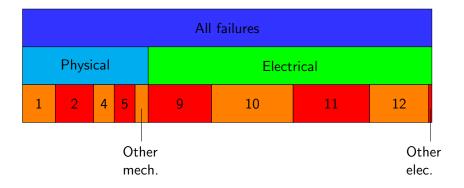
Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.


ETTF degrading BEs:

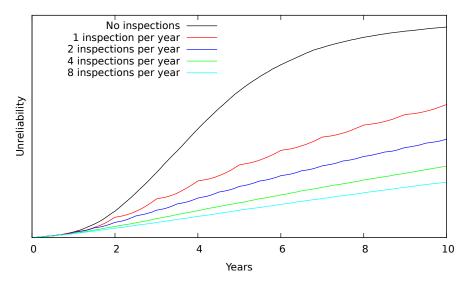
Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.

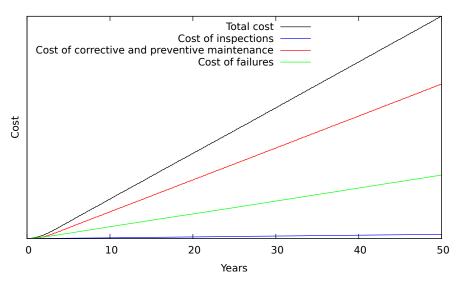
ETTF degrading BEs:

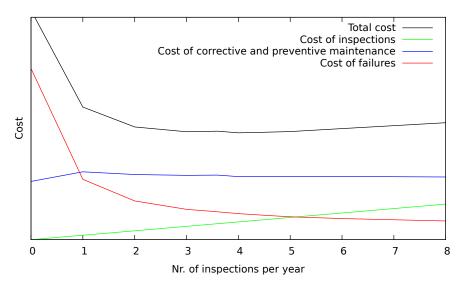
Red zone indicates detectable by inspection, color indicates percentage of susceptible joints.



ETTF exponential failures (logarithmic scale):


Joint shorted: splinters (11) Joint shorted: foreign object (12) Joint shorted: shavings (grinding) (13) Damage due to maintenance (14) Internal low resistance (15)


•	c ,
11):	200
12):	250
13):	5000 5000 2500
14):	5000
15):	2500

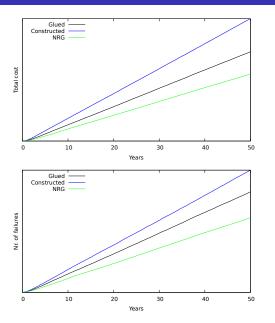

- Results are averages of 40,000 simulations.
- 95% Confidence window: width less than 1%.
- Computation time: Approx. 200 CPU-hours.
- Scales omitted for confidentiality.

Analysis results: unreliability

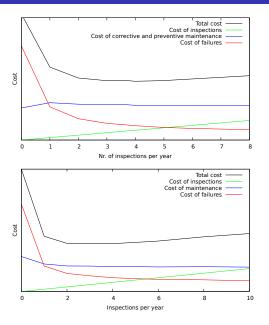
	Failure	Total	Maint.
Strategy	rate	cost	cost
Standard	1	1	0.76
Periodic replacement (5 yrs)	0.88	1.85	1.64
Periodic replacement (20 yrs)	0.98	1.17	0.94
Reduced maint. threshold	0.48	1.18	1.06

• Note: Reduced maintenance threshold may not be feasible in practice.

Case study: New Electrically insulated joint



Case study: New Electrically insulated joint


- New and improved joint developed for ProRail.
- Longer plates, more and repositioned bolts.
- More reliable, and more expensive.

Results on new joints

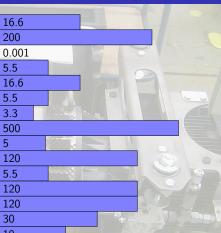
- Comparison of costs of three joint types:
 - Glued (previous case)
 - Constructed in situ
 - NRG (new)
- New joint is cost-effective under current maintenance policy.

Results on new joints

- Costs versus inspections of the two joint types.
- NRG joints require less maintenance for optimal costs.

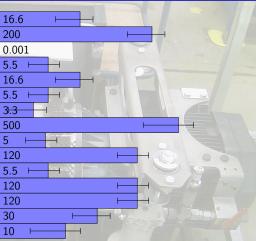
- Cost-optimal inspection frequency around 4 times per year.
- Cost approximately flat from 2 to 6 inspection per year.
- More failures can be prevented, but not cost-effectively.
- New NRG-Joint is cost-effective, and requires less maintenance.

Case study: Pneumatic compressor


- Powers brakes, doors, etc.
- Fail-safe but failures cause disruptions.
- Maintenance is essential for normal operation.
- Result: Analysis of maintenance effectiveness.

FMT Pneumatic compressor

Failure modes


Motor does not start when asked (1): De-aeration valve defective (2): Two starts in short time (3): Radiator obstructed (4): Oil thermostat defective (5): Low oil level (6): Pressure valve leakage (7): Air filter obstructed (8): Degraded air filter (9): Particle-induced damage (10): Oil pollution (11): 5.5 Lubrication-induced wear (12): Motor/bearings degraded (13): Oil fine filter full (14): Degraded capacity (15): 10

- Bars show MTTF (years, logarithmic), whiskers show std. deviation
- Estimates from maintenance engineers, system experts.
- Experiment reports from simulation environment.

Failure modes

Motor does not start when asked (1): De-aeration valve defective (2): Two starts in short time (3): Radiator obstructed (4): Oil thermostat defective (5): Low oil level (6): Pressure valve leakage (7): Air filter obstructed (8): Degraded air filter (9): Particle-induced damage (10): Oil pollution (11): 5.5 Lubrication-induced wear (12): Motor/bearings degraded (13): Oil fine filter full (14): Degraded capacity (15): 10

- Bars show MTTF (years, logarithmic), whiskers show std. deviation
- Estimates from maintenance engineers, system experts.
- Experiment reports from simulation environment.

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

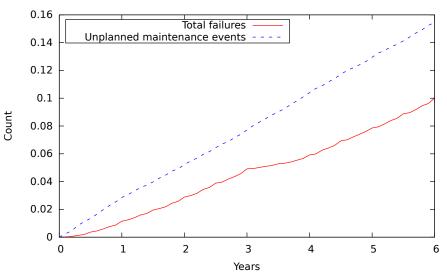
ΒE	Phase	Action	Result
1	2	S1	1

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- O2: Major overhaul (return to as-good-as-new)

BE	Phase	Action	Result
1	2	S1	1
1	2	01	1
2	2	01	1
3	2	Any	1
4	3	S1	2

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

BE	Phase	Action	Result
1	2	S1	1
1	2	01	1
2	2	01	1
3	2	Any	1
4	3	S1	2
4	Any	01	1
5	2	S1	O2

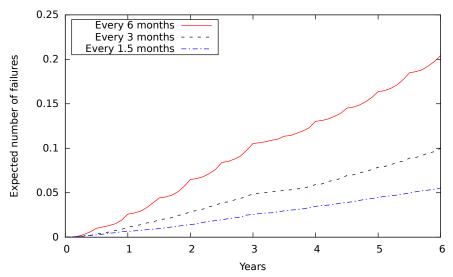

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- O2: Major overhaul (return to as-good-as-new)

BE	Phase	Action	Result
1	2	S1	1
1	2	01	1
2	2	01	1
2 3	2 2 2 2	Any	1
4	3	S1	2
4	Any	01	1
5 5	2	S1	O2
5	2 2	01	1
6	Any	S1	1
6	Any	01	1
7	2	11	1
7	2 2	S1	1
8	Any	S1	1
8	Any	01	1

- **I1**: Bi-daily visual inspection (oil leaks, ...)
- **S1**: Three-monthly service (test pressure, replace filters, ...)
- **S2**: Nine-monthly service (like S1, also replace oil, ...)
- **O1**: Minor overhaul (disassemble, replace worn parts, ...)
- **O2**: Major overhaul (return to as-good-as-new)

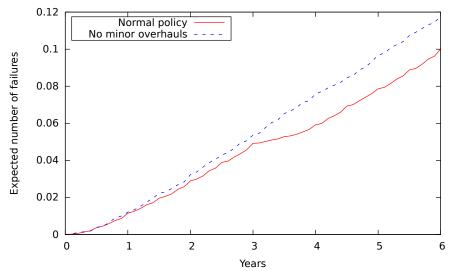
Results compressor case

Current maintenance policy:



Current maintenance policy:

All failures						
No operation		Reduced capacity				
1	4	5		10	12	13
	Other no op.				Other red. ca	


Results compressor case

Effect of service frequency:

Results compressor case

Effect of minor overhaul:

- Results for current policy are close to reality.
- Service frequency is important parameter for reliability.
- Minor overhaul may not be cost-effective.

Fault maintenance trees

- Our method integrates maintenance in fault trees.
- We can compute quantitative metrics to compare maintenance strategies.
- We demonstrated our method in industrial case studies.

- Automated translation from FMT to Uppaal.
- Model reduction to make analysis using I/O-MRA feasible.