Reliability-centered maintenance of the Electrically Insulated Joint
via Fault Tree Analysis:
A practical experience report

Enno Ruijters, Dennis Guck, Martijn van Noort, Mariëlle Stoelinga

July 1, 2016
Importance of maintenance

- Even very reliable systems need maintenance
Importance of maintenance

- Even very reliable systems need maintenance
Maintenance

- **Crucial**: Large impact on reliability, availability, life span.
- **Costly**: Labour, equipment, down time.
Maintenance optimization via fault trees

Maintenance

- **Crucial**: Large impact on reliability, availability, life span.
- **Costly**: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost
Maintenance optimization via fault trees

Maintenance

- **Crucial**: Large impact on reliability, availability, life span.
- **Costly**: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

Using fault trees

- Model maintenance in fault trees
- Study effects
- Using model checking
Maintenance optimization via fault trees

Maintenance

- **Crucial:** Large impact on reliability, availability, life span.
- **Costly:** Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

Using fault trees

- Model maintenance in fault trees
- Study effects
- Using model checking

<table>
<thead>
<tr>
<th>Nr. of inspections per year</th>
<th>Cost of inspections</th>
<th>Cost of failures</th>
<th>Cost of corrective and preventive maintenance</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>
Fault maintenance trees (FMTs): 3 key ingredients

FMT goals:
- What is the effect of maintenance on system performance:
 - Reliability, availability, # of failures per year?
- Can we do better (lower costs / better performance)?

Model checking brings modularity and flexibility.
Ingredient #1: maintenance

Types:
- Corrective maintenance
- Preventive maintenance

Maintenance
Ingredient #1: maintenance

Types:
- Corrective maintenance
- Preventive maintenance

Strategies:
- Age-based
- Use-based
- Condition-based
Ingredient #2: fault trees

Tool for RAMS

- How do component failures propagate to system failures?
- $\mathbb{P}[$failure within mission time$]$ (reliability)
- $\mathbb{E}[$up-time$]$ (availability)
- MTTF, MTBF, etc.
Ingredient #2: fault trees

Tool for RAMS
- How do component failures propagate to system failures?
- $\mathbb{P}[\text{failure within mission time}]$ (reliability)
- $\mathbb{E}[\text{up-time}]$ (availability)
- MTTF, MTBF, etc.

Our addition
- New gate: RDEP
- Trigger accelerates failure rates of dependent events
Ingredient #3: model checking

Model checking

- Using Uppaal-SMC
Ingredient #3: model checking

Model checking
- Using Uppaal-SMC
- Advantages:
 - Ease of modelling
- Disadvantages:
 - No guaranteed results
 - Not (currently) suitable for very rare events.
Model checking

- Using Uppaal-SMC
- Advantages:
 - Ease of modelling
 - Arbitrary probability distributions
Ingredient #3: model checking

Model checking
- Using Uppaal-SMC
- Advantages:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy

Disadvantages:
- No guaranteed results
- Not (currently) suitable for very rare events.
Ingredient #3: model checking

Model checking
- Using Uppaal-SMC
- Advantages:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results
Ingredient #3: model checking

Model checking

- Using Uppaal-SMC
- Advantages:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results
 - Not (currently) suitable for very rare events.
Case study: Electrically insulated joint

- Electrically separates section of track.
- 50,000 EIJs in the Netherlands.
- Important cause of train service disruptions.

Result: Cost-optimal maintenance strategy.
EI-Joint

- Case study in collaboration with ProRail (Dutch railway asset management company).
- Data obtained from ProRail experts
- Maintenance: Periodic inspections, repairs
- Costs for inspections, repairs, and failures
Outline

1. Introduction
2. Fault maintenance trees
3. Case study
4. Conclusions
Fault trees

- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine
Fault trees

- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine

Images of the elements in a fault tree

Example fault tree
Maintenance in fault trees

- Many failures are not random events.
 - Wear over time

- Production faults caused by other failures

Maintenance is essential for reliability.
- Reduce or prevent wear
- Replace or repair worn components
- Correct failures when they occur

Maintenance is not explicitly modeled in standard fault trees.
Many failures are not random events.
 - Wear over time
 - Production faults

Maintenance is essential for reliability.
- Reduce or prevent wear
- Replace or repair worn components
- Correct failures when they occur

Maintenance is not explicitly modeled in standard fault trees.
Many failures are not random events.
- Wear over time
- Production faults
- Caused by other failures
Maintenance in fault trees

- Many failures are not random events.
 - Wear over time
 - Production faults
 - Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
Maintenance in fault trees

- Many failures are not random events.
 - Wear over time
 - Production faults
 - Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
 - Replace or repair worn components
Many failures are not random events.
- Wear over time
- Production faults
- Caused by other failures

Maintenance is essential for reliability.
- Reduce or prevent wear
- Replace or repair worn components
- Correct failures when they occur
Many failures are not random events.
- Wear over time
- Production faults
- Caused by other failures

Maintenance is essential for reliability.
- Reduce or prevent wear
- Replace or repair worn components
- Correct failures when they occur

Maintenance is not explicitly modeled in standard fault trees.
- Timed automata with degradation stages.

\[s_0 \xrightarrow{\lambda_1} s_1 \xrightarrow{\lambda_2 \text{ threshold!}} s_2 \xrightarrow{\lambda_3 \text{ fail!}} s_4 \]

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>New</td>
</tr>
<tr>
<td>s_1</td>
<td>Okay</td>
</tr>
<tr>
<td>s_2</td>
<td>Degraded</td>
</tr>
<tr>
<td>s_4</td>
<td>Failed</td>
</tr>
</tbody>
</table>
Modelling BEs

- Timed automata with degradation stages.
- Signals for composition:
 - Maintenance threshold
 - Repair
 - Failure
- Other modules will send/receive these signals.
Rate-affecting failures

- Some failures accelerate wear of other components.
Rate-affecting failures

- Some failures accelerate wear of other components.
- New variant on the FDEP gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ.
Some failures accelerate wear of other components.

New variant on the FDEP gate: rate dependency (RDEP).

Failure of trigger BE accelerates degradation.

Rates increase by factor γ.

Repair of trigger BE does not repair triggered BE.
Some failures accelerate wear of other components.
New variant on the FDEP gate: rate dependency (RDEP).
Failure of trigger BE accelerates degradation.
Rates increase by factor γ.
Repair of trigger BE does not repair triggered BE.
Modelling inspections and repairs

Repair module:
- Periodically start repairs (optional)
- Inspection may trigger repairs early

![Diagram](attachment:image.png)

- s_0 to s_1: T_p
- s_1 to s_0: start_repair?
- s_1 to s_2: T_r
- s_0 to s_2: repair!
Modelling inspections and repairs

Inspection module:
- Periodically perform inspection
- If threshold reached: Start repair
- Otherwise: Do nothing
Outline

1. Introduction
2. Fault maintenance trees
3. Case study
4. Conclusions
Case study: Electrically insulated joint

- Electrically separates section of track.
- 50,000 EIJs in the Netherlands.
- Important cause of train service disruptions.
Case study

Failure El-joint

Mechanical failure

Failure electrical isolation

Joint shorted

RDEP

1

2

3

4

5

6

RDEP

5a

5b

10a

10b

11

12

13

14

15
Obtaining quantitative parameters:
- Follow FMEA ProRail.
Modelling

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.
Modelling

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.
- Most failures only occur in a subset of joints.
 - E.g. failures from steel shavings occur only in curved track.
 - These probabilities were obtained by questionnaire sent to experts.
Failure modes

<table>
<thead>
<tr>
<th>BE nr.</th>
<th>Failure mode</th>
<th>ETTF (years)</th>
<th>Phases (thres.)</th>
<th>Prob. cnd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad geometry</td>
<td>5</td>
<td>4 (3)</td>
<td>10%</td>
</tr>
</tbody>
</table>
Failure modes

<table>
<thead>
<tr>
<th>BE nr.</th>
<th>Failure mode</th>
<th>ETTF (years)</th>
<th>Phases (thres.)</th>
<th>Prob. cnd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad geometry</td>
<td>5</td>
<td>4 (3)</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>Broken fishplate</td>
<td>8</td>
<td>4 (3)</td>
<td>33%</td>
</tr>
<tr>
<td>BE nr.</td>
<td>Failure mode</td>
<td>ETTF (years)</td>
<td>Phases (thres.)</td>
<td>Prob. cond.</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Bad geometry</td>
<td>5</td>
<td>4 (3)</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>Broken fishplate</td>
<td>8</td>
<td>4 (3)</td>
<td>33%</td>
</tr>
<tr>
<td>3</td>
<td>Broken bolt</td>
<td>15</td>
<td>4 (3)</td>
<td>33%</td>
</tr>
<tr>
<td>4</td>
<td>Rail head broken out</td>
<td>10</td>
<td>4 (3)</td>
<td>33%</td>
</tr>
<tr>
<td>5</td>
<td>Glue connection broken</td>
<td>10</td>
<td>4 (3)</td>
<td>33%</td>
</tr>
<tr>
<td>6</td>
<td>Battered head</td>
<td>20</td>
<td>4 (3)</td>
<td>5%</td>
</tr>
<tr>
<td>7</td>
<td>Arc damage</td>
<td>5</td>
<td>3 (2)</td>
<td>0.2%</td>
</tr>
<tr>
<td>8</td>
<td>End post broken out</td>
<td>7</td>
<td>3 (2)</td>
<td>33%</td>
</tr>
<tr>
<td>9</td>
<td>Joint bypassed: overhang</td>
<td>5</td>
<td>4 (2)</td>
<td>100%</td>
</tr>
<tr>
<td>10a</td>
<td>Joint shorted: shavings (normal)</td>
<td>1</td>
<td>4 (3)</td>
<td>12%</td>
</tr>
<tr>
<td>10b</td>
<td>Joint shorted: shavings (coated)</td>
<td>10</td>
<td>4 (3)</td>
<td>3%</td>
</tr>
<tr>
<td>11</td>
<td>Joint shorted: splinters</td>
<td>200</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>12</td>
<td>Joint shorted: foreign object</td>
<td>250</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>13</td>
<td>Joint shorted: shavings (grinding)</td>
<td>5000</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>14</td>
<td>Sleeper shifted</td>
<td>5000</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>15</td>
<td>Internal low resistance</td>
<td>5000</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>16</td>
<td>End post jutting out</td>
<td>20</td>
<td>1</td>
<td>100%</td>
</tr>
</tbody>
</table>
Analysis results

- Results are averages of 40,000 simulations.
- 95% Confidence window: width less than 1%.
- Computation time: Approx. 200 CPU-hours.
- Scales omitted for confidentiality.
Analysis results: failure causes

<table>
<thead>
<tr>
<th></th>
<th>Mechanical</th>
<th>Other mech.</th>
<th>All failures</th>
<th>Electrical</th>
<th>Other elec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

25 / 32
Analysis results: unreliability

![Graph showing unreliability over time with different inspection frequencies.](image)

- No inspections
- 1 inspection per year
- 2 inspections per year
- 4 inspections per year
- 8 inspections per year

Unreliability increases over time for all inspection frequencies, with more frequent inspections leading to lower unreliability.
Analysis results: costs

![Graph showing costs over years with different cost components: Total cost, Cost of inspections, Cost of corrective and preventive maintenance, Cost of failures.]

- Total cost: Increasing linearly with years.
- Cost of inspections: Increasing linearly with years.
- Cost of corrective and preventive maintenance: Increasing linearly with years.
- Cost of failures: Increasing linearly with years.
Analysis results: inspection rate

<table>
<thead>
<tr>
<th>Nr. of inspections per year</th>
<th>Total cost</th>
<th>Cost of inspections</th>
<th>Cost of corrective and preventive maintenance</th>
<th>Cost of failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cost / Total cost: 28 / 32
Analysis results: other strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Failure rate</th>
<th>Total cost</th>
<th>Maint. cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>1</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>Periodic replacement (5 yrs)</td>
<td>0.88</td>
<td>1.85</td>
<td>1.64</td>
</tr>
<tr>
<td>Periodic replacement (20 yrs)</td>
<td>0.98</td>
<td>1.17</td>
<td>0.94</td>
</tr>
<tr>
<td>Reduced maint. threshold</td>
<td>0.48</td>
<td>1.18</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Note: Reduced maintenance threshold may not be feasible in practice.
Analysis results: other strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Failure rate</th>
<th>Total cost</th>
<th>Maint. cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>1</td>
<td>1</td>
<td>0.76</td>
</tr>
<tr>
<td>Periodic replacement (5 yrs)</td>
<td>0.88</td>
<td>1.85</td>
<td>1.64</td>
</tr>
<tr>
<td>Periodic replacement (20 yrs)</td>
<td>0.98</td>
<td>1.17</td>
<td>0.94</td>
</tr>
<tr>
<td>Reduced maint. threshold</td>
<td>0.48</td>
<td>1.18</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Note: Reduced maintenance threshold may not be feasible in practice.
Conclusions on EI-joints

- Cost-optimal inspection frequency around 4 times per year.
Conclusions on El-joints

- Cost-optimal inspection frequency around 4 times per year.
- Cost approximately flat from 2 to 6 inspection per year.
Conclusions on EI-joints

- Cost-optimal inspection frequency around 4 times per year.
- Cost approximately flat from 2 to 6 inspection per year.
- More failures can be prevented, but not cost-effectively.
Conclusions

- Our method integrates maintenance in fault trees.
Conclusions

- Our method integrates maintenance in fault trees.
- We can compute how dependability characteristics vary with different maintenance strategies.
Conclusions

- Our method integrates maintenance in fault trees.
- We can compute how dependability characteristics vary with different maintenance strategies.
- We have demonstrated our approach with a case study.