Reliability-centered maintenance of the Electrically Insulated Joint via Fault Tree Analysis: A practical experience report

Enno Ruijters, Dennis Guck, Martijn van Noort, Mariëlle Stoelinga

July 1, 2016

・ロン ・四 と ・ ヨ と ・ ヨ と

1/32

Fault maintenance trees

3 Case study

 • Even very reliable systems need maintenance

Importance of maintenance

• Even very reliable systems need maintenance

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

Using fault trees

- Model maintenance in fault trees
- Study effects
- Using model checking

- Crucial: Large impact on reliability, availability, life span.
- Costly: Labour, equipment, down time.

Optimize:

- Performance benefits
- Maintenance cost

Using fault trees

- Model maintenance in fault trees
- Study effects
- Using model checking

Fault maintenance trees (FMTs): 3 key ingredients

Maintenance FMT goals: Fault Trees

Model Checking

イロト 不同下 イヨト イヨト

- What is the effect of maintenance on system performance:
 - Reliability, availability, # of failures per year?
- Can we do better (lower costs / better performance)?

Model checking brings modularity and flexibility.

5/32

Ingredient #1: maintenance

Maintenance

Types:

- Corrective maintenance
- Preventive maintenance

イロン イヨン イヨン イヨン 三日

6/32

Ingredient #1: maintenance

Maintenance

Types:

- Corrective maintenance
- Preventive maintenance

Strategies:

- Age-based
- Use-based
- Condition-based

Ingredient #2: fault trees

Tool for RAMS

- How do component failures propagate to system failures?
- $\mathbb{P}[\text{failure within mission time}]$ (reliability)
- $\mathbb{E}[up-time]$ (availability)
- MTTF, MTBF, etc.

Ingredient #2: fault trees

Tool for RAMS

- How do component failures propagate to system failures?
- P[failure within mission time] (reliability)
- $\mathbb{E}[up-time]$ (availability)
- MTTF, MTBF, etc.

イロト 不得下 イヨト イヨト 二日

Our addition

- New gate: RDEP
- Trigger accelerates failure rates of dependent events

• Using Uppaal-SMC

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions

(日) (同) (三) (三)

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy

イロト イポト イヨト イヨト

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results

イロト イポト イヨト イヨト

- Using Uppaal-SMC
- Advangates:
 - Ease of modelling
 - Arbitrary probability distributions
 - Choice of speed or high accuracy
- Disadvantages:
 - No guaranteed results
 - Not (currently) suitable for very rare events.

イロト イポト イヨト イヨト

Case study: Electrically insulated joint

- Electrically separates section of track.
- 50.000 EIJs in the Netherlands.
- Important cause of train service disruptions.
- **Result:** Cost-optimal maintenance strategy.

EI-Joint

- Case study in collaboration with ProRail (Dutch railway asset management company).
- Data obtained from ProRail experts
- Maintenance: Periodic inspections, repairs
- Costs for inspections, repairs, and failures

2 Fault maintenance trees

3 Case study

<ロ > < 部 > < 言 > く 言 > こ > う < ご 11 / 32

- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine

- Describe combinations of faults leading to failures
- Root of tree: Top Event; i.e. system failure
- Leaves: Basic Events; i.e. elementary failures and faults
- Nodes: Gates; describe how faults combine

Example fault tree

- Many failures are not random events.
 - Wear over time

• Many failures are not random events.

- Wear over time
- Production faults

• Many failures are not random events.

- Wear over time
- Production faults
- Caused by other failures

• Many failures are not random events.

- Wear over time
- Production faults
- Caused by other failures

• Maintenance is essential for reliability.

Reduce or prevent wear

• Many failures are not random events.

- Wear over time
- Production faults
- Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
 - Replace or repair worn components

Many failures are not random events.

- Wear over time
- Production faults
- Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
 - Replace or repair worn components
 - Correct failures when they occur

Many failures are not random events.

- Wear over time
- Production faults
- Caused by other failures
- Maintenance is essential for reliability.
 - Reduce or prevent wear
 - Replace or repair worn components
 - Correct failures when they occur

Maintenance is not explicitly modeled in standard fault trees.

• Timed automata with degradation stages.

Modelling BEs

- Timed automata with degradation stages.
- Signals for composition:
 - Maintenance threshold
 - Repair
 - Failure
- Other modules will send/receive these signals.

• Some failures accelerate wear of other components.

- Some failures accelerate wear of other components.
- New variant on the FDEP gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .

- Some failures accelerate wear of other components.
- New variant on the FDEP gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .
- Repair of trigger BE does not repair triggered BE.

- Some failures accelerate wear of other components.
- New variant on the FDEP gate: rate dependency (RDEP).
- Failure of trigger BE accelerates degradation.
- Rates increase by factor γ .
- Repair of trigger BE does not repair triggered BE.

Repair module:

- Periodically start repairs (optional)
- Inspection may trigger repairs early

Inspection module:

- Periodically perform inspection
- If threshold reached: Start repair
- Otherwise: Do nothing

Fault maintenance trees

<ロト < 部 > < 言 > < 言 > 言 の < ご 19 / 32

Case study: Electrically insulated joint

- Electrically separates section of track.
- 50.000 EIJs in the Netherlands.
- Important cause of train service disruptions.

Case study

Obtaining quantitative parameters:

• Follow FMEA ProRail.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.

Obtaining quantitative parameters:

- Follow FMEA ProRail.
- Accelerating failure causes obtained by interviewing experts.
- Failure curves obtained by fitting against historical failure data.
- Most failures only occur in a subset of joints.
 - E.g. failures from steel shavings occur only in curved track.
 - These probabilities were obtained by questionnaire sent to experts.

Failure modes

	I. State State		you and	a plan	San State
BE	Failure mode	ETTE	Phases	Prob.	
nr.		(years)	(thres.)	cnd.	0
1	Bad geometry	5	4 (3)	10%	
5	,				
1	-				20-
1					and the second
1					
				0	
				- CAN	
					G.
					1 alex
					2
	T. Control of the second				
1. 1. 11			1		
					and the second
		at the second			

Failure modes

BE nr.		ETTF (years)	Phases (thres.)	Prob. cnd.
1	Bad geometry	5	4 (3)	10%
2	Broken fishplate	8	4 (3)	33%

Failure modes

					ALC: NO
2	BE	Failure mode	ETTF	Phases	Prob.
	nr.	C Alert	(years)	(thres.)	cnd.
-	1	Bad geometry	5	4 (3)	10%
	2	Broken fishplate	8	4 (3)	33%
	3	Broken bolt	15	4 (3)	33%
	4	Rail head broken out	10	4 (3)	33%
	5	Glue connection broken	10	4 (3)	33%
	6	Battered head	20	4 (3)	5%
	7	Arc damage	5	3 (2)	0.2%
	8	End post broken out	7	3 (2)	33%
	9	Joint bypassed: overhang	5	4 (2)	100%
	10a	Joint shorted: shavings (normal)	1	4 (3)	12%
	10b	Joint shorted: shavings (coated)	10	4 (3)	3%
	11	Joint shorted: splinters	200	1	100%
	12	Joint shorted: foreign object	250	1	100%
	13	Joint shorted: shavings (grinding)	5000	1	100%
	14	Sleeper shifted	5000	1	100%
	15	Internal low resistance	5000	1	100%
	16	End post jutting out	20	1	100%
	and a second				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Analysis results

Results are averages of 40,000 simulations.
95% Confidence window: width less than 1%.
Computation time: Approx. 200 CPU-hours.
Scales omitted for confidentiality.

Analysis results: failure causes

Analysis results: unreliability

26/32

イロト イロト イヨト イヨト 二日

27 / 32

28 / 32

Analysis results: other strategies

Strategy	Failure rate	Total cost	Maint.
Standard	1	1	0.76
Periodic replacement (5 yrs)	0.88	1.85	1.64
Periodic replacement (20 yrs)	0.98	1.17	0.94
Reduced maint. threshold	0.48	1.18	1.06

Analysis results: other strategies

- Contraction of the second	Failure	Total	Maint.	
Strategy	rate	cost	cost	
Standard	1	1	0.76	
Periodic replacement (5 yrs)	0.88	1.85	1.64	2
Periodic replacement (20 yrs)	0.98	1.17	0.94	5
Reduced maint. threshold	0.48	1.18	1.06	-

• Note: Reduced maintenance threshold may not be feasible in practice.

Conclusions on El-joints

• Cost-optimal inspection frequency around 4 times per year.

Conclusions on El-joints

Cost-optimal inspection frequency around 4 times per year.Cost approximately flat from 2 to 6 inspection per year.

Conclusions on El-joints

- Cost-optimal inspection frequency around 4 times per year.
 Cost approximately flat from 2 to 6 inspection per year.
- More failures can be prevented, but not cost-effectively.

Fault maintenance trees

3 Case study

<ロト < 部 > < 言 > < 言 > こ > < 言 > 31 / 32

Conclusions

• Our method integrates maintenance in fault trees.

Conclusions

- Our method integrates maintenance in fault trees.
- We can compute how dependability characteristics vary with different maintenance strategies.

Conclusions

- Our method integrates maintenance in fault trees.
- We can compute how dependability characteristics vary with different maintenance strategies.
- We have demonstrated our approach with a case study.