1. Project goals

How can we efficiently model and analyse big railway systems and:
- compare the effects of different maintenance strategies?
- automatically synthesize maintenance strategies?
- obtain smart maintenance strategies?
- improve reliability and availability?

2. Railroad and Dependability

Safety-critical systems like railroad infrastructures are required to be reliable and to satisfy a high availability and a safe operation:
- RAMS (Reliability, Availability, Maintenance and Safety) is required by law
- ProRail demands for high availability and reliability
- Maintenance decisions have high impact

3. Infrastructure and Assets

- Signals: 11,683
- Rails: 7,033km
- Netlength: 3,063km
- Switches: 7,195
- Crossings: 2,731
- Stations: 404
- Bridges: 56
- Tunnels: 17
- Trainkilometers: 150 mil.

4. Dynamic Fault Trees (DFTs)

- Graphical technique.
- Widely used in industry (ProRail, NASA, ESA, KEMA, ...).
- Logic gates.
- How component failures lead to system failures.

5. Methods: compositional aggregation and stochastic model checking

- DFT Transformation Composition Minimisation Markov model Result
- Mean time to failure
- Reliability until mission time
- Availability
- Long-run costs
- Measured

6. Discussion

- How can we quantify the balance between safety and cost?
- What is the best way to link measurements to maintenance activities?
- What kind of maintenance should be given as input?
- How to validate maintenance strategies?
- Could the tool offer suggestions for design modifications as well as maintenance plans?

7. Acknowledgement

This project is funded under project number 12238 by a partnership program between STW and ProRail called “ExploRail”.

UNIVERSITY OF TWENTE.
d.guck@utwente.nl e.j.j.ruijters@utwente.nl http://fmt.cs.utwente.nl/research/projects/ArRangeer/