
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-69483-2_19.

https://doi.org/10.1007/978-3-319-69483-2_19

How to Efficiently Build a Front-End Tool
for UPPAAL: A Model-Driven Approach

Stefano Schivo1, Buğra M. Yildiz1, Enno Ruijters1, Christopher Gerking2,
Rajesh Kumar1, Stefan Dziwok3, Arend Rensink1, and Mariëlle Stoelinga1

1 Formal Methods and Tools, University of Twente,
{s.schivo, b.m.yildiz, e.j.j.ruijters,

r.kumar, a.rensink, m.i.a.stoelinga}@utwente.nl
2 Software Engineering, Heinz Nixdorf Institute, Paderborn University,

christopher.gerking@upb.de
3 Software Engineering, Fraunhofer IEM, Paderborn,

stefan.dziwok@iem.fraunhofer.de

Abstract. We propose a model-driven engineering approach that facil-
itates the production of tool chains that use the popular model checker
Uppaal as a back-end analysis tool. In this approach, we introduce a
metamodel for Uppaal’s input model, containing both timed-automata
concepts and syntax-related elements for C-like expressions. We also in-
troduce a metamodel for Uppaal’s query language to specify temporal
properties; as well as a metamodel for traces to interpret Uppaal’s coun-
terexamples and witnesses. The approach provides a systematic way to
build software bridging tools (i.e., tools that translate from a domain-
specific language to Uppaal’s input language) such that these tools be-
come easier to debug, extend, reuse and maintain. We demonstrate our
approach on five different domains: cyber-physical systems, hardware-
software co-design, cyber-security, reliability engineering and software
timing analysis.

1 Introduction

Uppaal [3] is a leading model checker for real-time systems, allowing one to
verify automatically whether a system meets its timing requirements. Uppaal
and its extensions have been applied to a large number of domains, ranging
from communication protocols [28], over planning [4] to systems biology [31]. As
such, Uppaal is a popular back-end for various other real-time analysis tools,
such as ANIMO [31], sdf2ta [13] and STATE [19]. Typically such tools take their
inputs in a domain-specific language (DSL) and translate these inputs into timed
automata, which are then fed into Uppaal to perform the analysis. In this way,
domain experts can write their models in a DSL that they are familiar with,
while still using Uppaal’s powerful analysis algorithms behind the scenes.

A disadvantage of this approach is, however, that the tools that translate
from a DSL to Uppaal’s input language, i.e., software bridging tools, are often
implemented ad hoc, and hence difficult to debug, reuse, extend and maintain.

2

To overcome this problem, we advocate to develop these tools with model-
driven engineering (MDE) techniques, which studies [26] have demonstrated can
lead to faster software development, with higher levels of interoperability and
lower cost. MDE is an approach that uses models as first-class citizens, rather
than as by-product of intermediate steps. In MDE, a metamodel captures core
concepts and behavior of a certain domain. Then, domain-specific models are
instances of this metamodel and can be transformed to other models, formats
or formalisms via model transformations.

In this paper, we propose an MDE approach for tools that use Uppaal
as a back-end. In the context of our approach, we introduce metamodels for
Uppaal timed automata, Uppaal’s query language and its diagnostic traces,
in order to transform the domain-specific models to Uppaal, analyze them and
transform the results back to a domain-specific representation, respectively. Our
metamodels also support Uppaal’s extensions with cost [4] and probability [7].

We show our approach on five diverse application domains: cyber-physical
systems, namely, coordination protocols of MechatronicUML; hardware-soft-
ware co-design, namely, scheduling of synchronous dataflow graphs; cyber-se-
curity, namely, analysis of attack trees; reliability engineering, namely, analysis
of fault trees; and software timing analysis, namely, timing analysis of Java
applications.

Our contributions. To summarize, our main contribution is an MDE approach
for building software bridging tools around the Uppaal model checker. Con-
cretely, we introduce (1) metamodels1 for Uppaal’s timed automata, queries
and traces, providing all the ingredients needed to construct Uppaal models,
verify relevant properties and interpret the results; (2) model transformations
from several domain-specific models to the Uppaal models and back; and (3)
five case studies demonstrating how the approach is applied in practice and
supports a wide range of application domains.

Overview of our MDE approach. The proposed approach can be seen in Figure 1.
Taking into consideration the analysis of a (generic) domain-specific model, the
most important steps involving a bridging software tool that implements our
approach are the following:

– In Step 1, a domain-specific model is generated/created by the domain ex-
pert. This model is an instance of the metamodel of a particular domain
of interest. Such a metamodel defines the concepts and their relationships
in that domain. For some domains, it may be more convenient to define
multiple related metamodels targeting distinct concerns.

– In Step 2, the domain-specific model is transformed to a timed-automata
model, conforming to the Uppaal Timed Automata metamodel (uta) we
propose as part of the contribution of this paper. A snippet of such a trans-
formation can be found in Figure 7.

1 The metamodels are available at https://github.com/uppaal-emf/uppaal.

https://github.com/uppaal-emf/uppaal

3

– In Step 3, the property against which the domain-specific model is to be
checked is specified in a query language specific to the domain.

– In Step 4, the query specified in the domain-specific query language is trans-
formed to a corresponding Uppaal query, in turn conforming to the Uppaal
Query metamodel (uqu) we propose as part of the contribution of this paper.

– In Step 5, Uppaal checks if the timed-automata model (a uta model) satis-
fies the property specified by the generated query (a uqu model). The result
of this operation is usually a diagnostic trace. As part of this step, the uta
and uqu models are transformed into the native Uppaal input formats;
moreover, the diagnostic trace natively produced by Uppaal is transformed
into yet another model, conforming to the Uppaal Trace metamodel (utr)
that we also propose as part of the contribution of this paper.

– In Step 6, the utr model is transformed back to a domain-specific represen-
tation. This representation can conform to a metamodel that is designed to
express the analysis results in an understandable way by the domain experts.

U
PP

AA
L

Do
m

ai
n

conforms to

Domain-Specific
Metamodel

Domain-Specific
Model

Timed Automata
Model

 UPPAAL Timed
Automata

Metamodel (UTA)

conforms to

conforms to

Domain-Specific
Query Language

Domain-Specific
Query

UPPAAL Query

UPPAAL Query
Metamodel (UQU)

conforms to

Trace Model

UPPAAL Trace
Metamodel (UTR)

conforms to

Model
Transformation

Model
Transformation

Model Checking

Model
Transformation

1

2

3

4

5

6

conforms to

Domain-Specific
Representation

Metamodel

Domain-Specific
Representation

Fig. 1. The generic model-driven engineering approach for building front-end tools that
use Uppaal as a back-end analysis engine.

Organization of the paper. Section 2 provides some background information
about MDE and the timed-automata formalism. Section 3 introduces the three
metamodels and their transformations. Section 4 discusses the case studies. Sec-
tion 5 discusses the related work and Section 6 concludes the paper.

4

Acknowledgements. This research was partially funded by STW and ProRail under
the project ArRangeer (grant 12238), STW project SEQUOIA (15474), NWO projects
BEAT (612001303) and SamSam (628.005.015), and EU project SUCCESS.

2 Background

In this section, we provide some background information about model-driven engineer-
ing (cf. Sect. 2.1) and the timed-automata formalism (cf. Sect. 2.2).

2.1 Model-Driven Engineering

Models are powerful tools to express structure, behavior and other properties in do-
mains such as engineering, physics, architecture and other fields. Model-Driven En-
gineering (MDE) is a software engineering approach that considers models not only
as documentation, but also adopts them as basic abstractions to be used directly in
development processes [33].

To define models of a particular domain, we need to specify their language. In
MDE, such a language (often referred to as a domain-specific language, DSL) is also
specified as a model at a more abstract level, called a metamodel. A metamodel captures
core concepts and behavior of a certain domain, and defines the permitted structure
and behavior, to which its instances (models) must adhere. Another way of saying
this is that metamodels describe the syntax of models [34]. Following the common
terminology, we will write that a model conforms to or is an instance of its metamodel.

MDE provides interoperability between domains (and tools in these domains) via
model transformations. The concept of model transformation is shown in Figure 2.
Model transformations are usually defined in a language designed specifically to this
aim and map the elements of a source metamodel to the elements of a target metamodel.
The transformation engine executes the transformation definition on the input model
and generates an output model.

Model

conforms to

Target Metamodel

Model

conforms to

Source Metamodel Transformation
Definition

Transformation
Engine

executes

maps from maps to

input output

Fig. 2. The concept of model transformation.

Benefits of MDE. MDE provides a range of important benefits [36], some of which
we briefly discuss below:

5

– Interoperability: As we have mentioned before, there can be multiple domains in a
project where various tools are used, each with its own I/O formats. MDE provides
interoperability between these domains (and tools in these domains) via model
transformations.

– Higher level of reusability: The metamodels, models and tools from a domain can
be reused by many projects targeting the same domains. Such reuse also increases
the quality of the final product since the reused units are revised and improved
continuously.

– Faster tool development: Domain experts only focus on the concepts of the do-
main while creating models. Transformations on these models are implemented
using languages designed specifically for model transformations rather than using
general-purpose languages. Because of these advantages of MDE, the development
time of tools decreases.

Tool Choice. There are a number of tools for realizing MDE. The case studies pre-
sented in this paper are implemented using the Eclipse Modeling Framework (EMF) [35],
a state-of-art tool for implementing MDE techniques. EMF provides the Ecore format
for defining metamodels and many plug-ins to support various functionalities, such as
querying, validation and transformation of models.

2.2 Timed Automata and UPPAAL

Timed automata are finite-state automata with the addition of real-valued clocks and
synchronization channels. In Figure 3, we show an example timed-automata model
(from [5]), with clocks x and y. Locations are indicated by circles (double circle for
the initial location), and transitions are represented by edges. Conditions on clocks
can enable transitions (e.g., x > 10 in Figure 3b, from dim to off) or allow residence in
locations (y < 5 in Figure 3a). Synchronizations can occur when two automata perform
complementary actions on the same channel: in the example, outputs press! synchronize
with inputs press?. When taking a transition, clocks can be reset (x:=0, y:=0).

Timed-automata models are verified with Uppaal [3] through queries expressed in
a subset of CTL [12]. In Figure 3c, we show the trace resulting from the verification
of the reachability query E<>lamp.bright, which asks whether a state where the lamp
automaton is in the bright location is reachable. The verification returns a positive
outcome, together with a witness trace, listing the sequence of states and transitions
leading to the desired target.

In addition to the standard version of Uppaal, some of the models presented in
this paper are intended for analysis by Uppaal CORA [4], which allows to compute
cost-optimal traces (see Section 4.2), and Uppaal-SMC [7], which allows to perform
statistical model checking (see Section 4.4).

3 Metamodels for the Approach

We use metamodeling to represent the domain of timed automata and enable the back-
end analysis of domain-specific models. Our approach extends the work by Greenyer
and Rieke [17] towards full-fledged metamodels, covering all language features accepted
by the Uppaal model checker. Thereby, we make sure that model transformations
may freely use any of Uppaal’s concepts when translating domain-specific models into
timed-automata models.

6

relax

studyy < 5

idle

y>10
press!

press!
y:=0

press!

press!

press!
y:=0

(a) Student

bright

dim

off

x > 10
press?

press?

x<=10
press?

press?
x:=0

(b) Lamp

Verifying formula 1: E<> lamp.bright

-- Formula is satisfied.
Showing example trace.

State:
(student.idle lamp.off)
student.y=0 lamp.x=0

Transitions:
student.idle–>student. id5 { 1, press!, y := 0 }
lamp.off–>lamp.dim { 1, press?, x := 0 }

State:
(student. id5 lamp.dim)
student.y=0 lamp.x=0

Transitions:
student. id5–>student.study { 1, press!, 1 }
lamp.dim–>lamp.bright { x <= 10, press?, 1 }

State:
(student.study lamp.bright)
student.y=0 lamp.x=0

(c) Trace

Fig. 3. An example of a timed-automata model (a, b) and the textual output (c) of
verifying the reachability query E<>lamp.bright as provided by Uppaal’s command-
line tool.

In Section 3.1, we present the metamodel for Uppaal timed automata (uta). Sec-
tion 3.2 describes a metamodel extension for Uppaal’s query language (uqu). A meta-
model for traces obtained from Uppaal (utr) is given in Section 3.3.

3.1 The UPPAAL Timed Automata Metamodel

Figure 4a shows an excerpt from our Uppaal Timed Automata metamodel (uta),
extending the metamodeling approach proposed in [17]. This metamodel reflects the
basic structure of timed automata accepted by Uppaal.

At the core of uta is a network of timed automata (NTA). An NTA includes a
set of global Declarations, containing instances of the abstract base class Declaration.
A declaration is used to introduce elements such as clocks or synchronization chan-
nels. Primarily, an NTA includes a non-empty set of templates where each Template
represents a type of timed automaton. Moreover, an NTA contains a separate set of
system declarations. These are specific TemplateInstances (omitted from the figure),
which constitute the set of concrete timed automata that make up the system to be
model-checked.

Templates include locations and edges, and every Template refers to one particular
initial location. Templates may also include local declarations (e.g., for clocks that
should not be reset from outside the automaton). Every Location refers to its incoming
and outgoing edges. In addition, a Location specifies an invariant which is a boolean
expression as an instance of the abstract base class Expression. An Edge may contain
expressions as well to specify updates of variables (e.g., clock resets). The metamodel
also contains syntax-related elements for the C-like expressions supported by Uppaal.

uta models are not the native input format of Uppaal and, therefore, are not
directly processable. We have implemented a model-to-text transformation, which takes
a uta model as input and transforms it into Uppaal native XML.

7

NTA
name : String

Template
name : String

Location
name : String

Edge

Declarations

Declaration

templates global
system

local

declarationsedgeslocations incoming

outgoing

1..*

1..* 0..*

0..*

0..*

0..*
initial

Expression
invariant updates

0..*

1

1

(a) uta (Uppaal Timed Automata)

Property

UnaryProperty
quantifier : PathQuantifier
operator : TemporalOperator

Expression

LeadsToProperty

rightleft
expression

PropertyRepository

properties

1

11

0..*

(b) uqu (Uppaal Queries)

Fig. 4. Partial views from the uta and uqu.

3.2 The UPPAAL Query Metamodel

Figure 4b depicts an excerpt from our Uppaal Query metamodel (uqu). Queries are
temporal logic properties to be verified using model checking. Multiple queries are
bundled by a PropertyRepository, which is the root class of the metamodel. A repository
contains a set of properties, where every Property represents one query. Every property
is either a UnaryProperty or a LeadsToProperty.

A UnaryProperty is a temporal formula that conforms to the computation tree
logic (CTL, [12]). First, such a property includes a quantifier (one of universal or
existential quantification) to describe whether the property must hold on all execution
paths, or at least one path. Second, it consists of a modal operator (one of globally
or finally) to describe if the property needs to hold in all states of a certain execu-
tion path, or needs to hold eventually in some state. Third, unary properties include
an expression to be evaluated in the context of the quantifier and the operator. For
example, this expression could represent an active location inside an automaton, or a
clock value. To this end, uqu extends uta and reuses the Expression class introduced
in Section 3.1.

A LeadsToProperty represents a binary property connecting two expressions by
means of the leads-to operator supported by Uppaal. Please note that, according
to the restrictions imposed by Uppaal on the set of CTL formulas supported, our
metamodel does not allow nested properties. However, we introduce dedicated classes
for logical connections of expressions (omitted from Figure 4b), precisely reflecting the
range of functions actually supported by Uppaal.

Like uta models, also uqu queries have to be transformed to Uppaal’s native
format before they can be actually processed. For this purpose, we provide another
model-to-text transformation.

3.3 The UPPAAL Trace Metamodel

The outcome of evaluating a query in Uppaal can be twofold: either a simple “yes”
(for a universally quantified query claiming that a given property holds for all paths)

8

or “no” (for an existentially quantified query asking whether a path with a given
property exists), and possibly a trace through the state-space of the timed-automata
model along which the query fails to hold (for a universal query) or that is a witness
(for an existential query). Queries are very often formulated in such a way that it is
known a priori whether they hold or not, the interesting part of the outcome is then
that diagnostic trace.

Uppaal outputs its traces in a native textual format that is not too well docu-
mented. From [6], we have taken a metamodel (utr) to capture the information in a
tractable way and a parser that produces utr models from Uppaal’s output. Like uqu,
also utr depends on uta itself, so that the traces can refer back to their constituent
components. Figure 5 gives a high-level overview of utr.

Trace

Transition

EdgeTransitionDelayTransition
delay : Float

transitionsstates

target

transitionTo

transitionFrom1

1..*
Location

Edge

edges
1..*

locations

State
name : String
valuations : Valuation [0..*]
clocks : ClockBoundary [0..*]
time : Float

1 source
0..*

Fig. 5. A partial view from utr (Uppaal Trace metamodel).

A Trace consists of States and Transitions; every State except the final one has a
single outgoing Transition. A State refers to a set of Locations (one for every Template-
Instance in the system, though that cannot be seen from the provided metamodel frag-
ment), together with Valuations, i.e., bindings for all the variables to concrete values,
as well as boundaries for all the clocks in the system (the Valuation and ClockBoundary
classifiers are omitted from the figure). Finally, a State stores the absolute time at
which the system arrived in that state. A Transition can either be a DelayTransition,
in which only time passes, or an EdgeTransition, in which a number of Edges (one for
every TemplateInstance involved) fire in synchrony. Location and Edge are imported
from uta.

4 Case Studies

The general MDE approach we propose for bridging software tools has been introduced
in Section 1. In this section, we present five case studies that have put this approach
into practice.

In Table 1, an overview of these case studies is given. After the section number,
the second column shows to which domain the approach is applied. The third column
contains the list of the metamodels that are used to describe that domain. The fourth
column gives the motivation why model checking is used for the particular case study.
The fifth column shows which steps from the approach (given in Figure 1) are im-
plemented in the particular case study. The following subsections describe these case
studies in more detail.

9

The transformations for the cyber-physical systems case study are specified in the
QVTo [27] language, for the other cases in the Epsilon Transformation Language [21].
Translation of the timed-automata models to the XML input files for Uppaal is per-
formed via the Xtend [11] language, using its template expressions for model-to-text
transformations.

Table 1. An overview of the case studies applying the proposed approach.

Sect. Domain
Domain

Metamodels
Motivation for using a model

checker

Steps of the
approach

4.1
Cyber-Physical

Systems
Protocol, Query

To verify whether a coordination
protocol fulfills all stated properties

1, 2, 3, 4, 5, 6

4.2

Hardware-
Software

Co-Design

Synchronous Data
Flow Graph,

Hardware Platform,
Allocation

To obtain a schedule for the execu-
tion of the tasks considering opti-
mization objectives of resource and
energy

1, 2, 5, 6

4.3 Cyber-Security Attack-Fault tree

To obtain a schedule of attack steps
optimizing objectives like time and
cost, or stochastic values, e.g., prob-
ability of attack within mission time.

1, 2, 5, 6

4.4
Reliability

Engineering
Attack-Fault tree

To obtain the probability of failure
within mission time.

1, 2, 5

4.5

Software
Timing
Analysis

Java Bytecode,
Timing Analysis

Extension

To validate Java applications to en-
sure that they fulfill their timing
specifications.

1, 2, 5

4.1 Coordination Protocols of CPSs

Future cyber-physical systems (CPS; e.g., cars, railway systems, smart factories) will
heavily interact with each other to contribute to aspects like safety, efficiency, comfort
and human health. They may achieve this by coordinating their actions via asyn-
chronous message exchange. However, such a coordination must be safe and has to
obey hard real-time constraints because any (timing) error may lead to severe damage
and even loss of human life. Consequently, the development of so-called coordination
protocols that specify the allowed message exchange sequences requires formal verifi-
cation like model checking to guarantee the functional correctness of the coordination.

Model checkers like Uppaal are appropriate for verifying such coordination proto-
cols but their language has no built-in support for domain-specific aspects like asyn-
chronous communication including message buffers and quality-of-service (QoS) as-
sumptions (e.g., message delay and reliability). Consequently, the domain expert has
to encode these aspects manually, which is a complex and error-prone task. Therefore,
the model-driven method MechatronicUML [10] defines a DSL for specifying coor-
dination protocols of CPS at a more abstract level. Among others, this DSL enables to
specify hierarchical state machines, real-time constraints, message buffers and the QoS
assumptions of the protocol. Furthermore, MechatronicUML defines a domain query
language to ease the specification of formal verification properties that a coordination
protocol of MechatronicUML shall fulfill. For example, the requirement “At least

10

one instance per message type of the coordination protocol can be in transit” may be
specified as follows: forall(m : MessageTypes) EF messageInTransit(m).

In [15,9], we have achieved to fully hide the model checker Uppaal from the do-
main expert by specifying domain-specific model checking for coordination protocols
of MechatronicUML using Uppaal. Our approach requires all six steps that we in-
troduce in Section 1. In particular, we assume that the coordination protocol and its
domain queries are specified in Steps 1 and 3. Then, in Step 2, we transform a coor-
dination protocol of MechatronicUML into a set of timed automata that conform
to uta. Moreover, in Step 4, we transform our domain query language into properties
that conform to uqu. We automate Uppaal in Step 5 and parse the textual trace into
a model that conforms to the utr metamodel. Finally, in Step 6, we apply a model
transformation to translate the trace back to the level of MechatronicUML in order
to show the trace to the domain expert. We have implemented our concepts successfully
into the MechatronicUML Tool Suite.

4.2 Synchronous Dataflow Graphs

Hardware-software (HW-SW) co-design is an engineering approach to simultaneously
design the hardware and software components of a system to meet optimization objec-
tives. Synchronous dataflow (SDF) graphs [25] are a frequently used formalism in the
HW-SW co-design domain to represent streaming and dataflow applications in terms of
their computation tasks and the data relationships among them. Tasks are represented
as nodes, and data input-output relationships between these tasks are represented as
edges. SDF graphs can be used to calculate an (energy- or time-) optimal schedule of
an application allocated on a particular hardware platform.

In [1], we have applied the generic approach presented in this paper for schedul-
ing analysis of SDF graphs with an energy-optimization objective. Three metamodels
are introduced as domain metamodels: The SDF metamodel representing SDF graphs,
the hardware platform metamodel representing multi-processor hardware platforms
on which SDF graphs can be mapped, and the allocation metamodel representing
such mappings. The domain-specific model, which consists of one instance of each
metamodel, is transformed to a timed-automata model and is analyzed with Uppaal
CORA [4]. The trace resulting from this analysis, which is an instance of the trace
metamodel given in Section 3.3, represents an energy-optimal schedule. In order to
make the result available to the domain experts, we have implemented a model transfor-
mation from trace models to schedule models. Schedule models conform to the Schedule
metamodel (see Fig. 6) that we have developed and described below.

Schedule is the root of the metamodel. It consists of Executors, Executables and
Tasks. An Executor represents a processing unit (which is usually a processor or a core)
that executes a task. An Executable is a computation unit that can be executed while a
Task is one execution instance of an Executable. A Task has a start time and an optional
end time, which are both Time references. The end time is optional since a Schedule
may contain Tasks that have not finished.

4.3 Attack Tree Analysis

Modern day infrastructures are frequently faced with cyber attacks. A key challenge
is to identify the most dangerous security vulnerabilities, estimate their likelihood and
prioritize investments to protect the system from the most riskful scenarios. Security

11

Time

Schedule

Task
name : String

Executor
name : String

Executable
name : String

tasks

executors

executable 11 executor

startTime

endTime
1

value : Float

executables
0..*

0..*

0..*

Fig. 6. The Schedule metamodel.

experts often model threat scenarios and perform quantitative risk assessment using
attack trees (ATs). These describe how atomic attack steps (the tree leaves) combine
into complex attacks (intermediate nodes, also called gates), leading to the security
breach represented by the root of the tree. Over the years, numerous formalisms inspired
by ATs have been proposed [22]. As they all share the same basic structure, we have
developed a metamodel [20] to support interoperability between the different tools
made to analyze attack trees. Furthermore, as attack trees resemble fault trees, we
enriched the AT metamodel with fault tree constructs, resulting in the attack-fault tree
(AFT) metamodel [29].

A piece of the transformation from attack trees to Uppaal can be seen in Fig. 7.
This section produces the overall structure (i.e., system declaration in Uppaal) from
the class called AttackTree in the metamodel AFT. The .equivalent() function trans-
forms each node into an Uppaal template and declaration, automatically selecting the
transformation rule for that node.

Traditional ATs are static, and their leaves are decorated with single attributes like
cost or time. In order to account for multiple attributes and temporal dependencies we
defined transformations from AFT models to uta models. The security properties that
can be checked require either optimization, like “What is the cost-optimal path taken

rule Base transform at : AFT!AttackTree to out : Uppaal!NTA {
out.systemDeclarations = new Uppaal!SystemDeclarations();

out.systemDeclarations.system = new Uppaal!System();

var iList = new Uppaal!InstantiationList();

out.systemDeclarations.system.instantiationList.add(iList);

for (node : AFT!Node in at.Nodes) {
var converted = node.equivalent();

if (converted <> null) {
out.template.add(converted.get(0));

out.systemDeclarations.declaration.add(converted.get(1));

iList.template.add(converted.get(1).declaredTemplate);

}
}
out.addTopLevel(at.Root);

}
rule andGate transform node : AFT!Node to ret : List {

guard : node.nodeType.isKindOf(AFT!AND)

...

Fig. 7. Snippet of the translation from the Attack Tree metamodel to uta.

12

by an attacker? [24]”, or the use of stochastic values, like “What is the probability of
an attack within m months? [23]”. Similar to what we did for Synchronous Dataflow
models, the results of optimization queries are computed using Uppaal CORA. The
outcome of such analysis is a trace which is automatically parsed, obtaining a utr
model. A trace obtained from this analysis can additionally be transformed into a
schedule, represented by an instance of the Schedule metamodel described in Section
4.2. The adoption of MDE allows us to reuse the Schedule metamodel to describe
results from the attack tree domain, as they are semantically close to the SDF results.
The stochastic values are computed using Uppaal-SMC. Plotting these results over
time yields graphs similar to the one in Fig. 8.

Currently, the optimization and stochastic security properties are expressed as
queries specific for Uppaal CORA and Uppaal-SMC, making them incompatible
with the current query metamodel.

4.4 Fault Tree Analysis

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 2 4 6 8 10

U
nr

el
ia

bi
lit

y

Years

Fig. 8. Example plot of reliabil-
ity over time as produced by auto-
matic analysis of a fault tree using
the Uppaal-SMC metamodel.

As society becomes ever more dependent on com-
plex technological systems, the failure of these
systems can have disastrous consequences. The
field of reliability engineering uses various meth-
ods to analyze such systems, to ensure that they
meet the required high standards of dependabil-
ity.

A popular formalism to perform such an anal-
ysis is fault tree analysis. Faults trees (FTs) are
similar to attack trees (described in Sect. 4.3),
however rather than modeling deliberate steps in
executing an attack, they model component fail-
ures (called basic events) that may combine to
cause system failures or other undesired events.

Standard FTs were developed in the 1960s and describe only boolean combinations
of faults. Since then, a large number of variations and extensions of fault trees have
been developed [30], covering aspects such as timing dependencies, uncertainty, and
maintenance. Most of these extensions were developed independently and traditional
tools do not support combinations. MDE simplifies the combination of models of dif-
ferent kinds and the analysis of those aspects that are shared between the different
formalisms.

Fault trees are described in a unified attack-fault tree (AFT) metamodel also used
for attack trees. The main difference from ATs is in the attributes of the basic events.
Where attack steps are controlled by an external attacker who makes deliberate de-
cisions based on factors such as cost, faults are inherently stochastic in nature: The
failure time is not externally decided, but rather governed by a probability distribution
attached to the fault.

The AFT metamodel supports basic events governed by hypoexponential distribu-
tions, and gates from standard fault trees, dynamic fault trees [8] and fault maintenance
trees [29], as well as gates from attack trees.

As one of the analysis back-ends of the AFT metamodel, we provide a model
transformation to a uta model. Unlike most applications described in this paper, the
analysis of this model does not result in a trace or a schedule, nor can its queries be

13

expressed in the current query metamodel. Queries are usually probabilistic in nature,
asking questions such as “What is the probability of the system failing within 5 years”.
Results are then numeric values answering such queries. While it is possible to extract
a trace from an FT, its value is limited due to the stochastic nature of the fault tree.

Instead, the typical use of the fault tree metamodel is to produce one Uppaal-SMC
model and automatically query the failure probability at different times. The results
of these queries can than be used to produce a plot of the system reliability over time,
such as the one shown in Figure 8.

4.5 Analysis of Java Programs

Model-based verification techniques for software applications require the existence of
expressive models. Typically, these models are derived manually, which is a labor-
intensive and error-prone task. Also, models need to be maintained and kept consistent
with the software application, lest they become outdated.

The framework we have introduced in [38] adopts the generic approach presented in
this paper for automatically deriving timed-automata models to validate Java applica-
tions, timing requirements in particular, using model checking. In this framework, the
bytecode metamodel [37] and its timing analysis extension are introduced as the domain
metamodels. The instance of the bytecode metamodel (bytecode model) is generated
from the target Java application automatically using the JBCPP plug-in. Following
this, the bytecode metamodel is enriched through a number of model transformations
with additional information necessary for analysis; this includes recursion handling,
loop detection, loop iteration bounding, timing information, etc. The additional in-
formation is represented as an instance of the extension metamodel. The enriched
bytecode model is then transformed to a uta model to be analyzed with Uppaal.

Queries are currently manually written and results of the model checking process
are not translated back to a domain-specific representation such as to a source-code
view. However, the implementation of these points using MDE is suggested in the
generic approach is a future direction of the study in [38].

5 Related Work

There are many studies that use Uppaal to verify systems. We limit this section to
the studies that automatically transform domain-specific models to timed automata,
or map the results of model checking back to the domain of interest.

The tool ANIMO (Analysis of Networks with Interactive MOdeling) [32] has been
introduced to analyze complex biological processes in living cells. ANIMO transforms
the domain-specific models defined by biologists to Uppaal models; then the results
of the model checking process are presented back in a domain-specific fashion. The
transformations in ANIMO are implemented in a general-purpose language, i.e., Java,
whereas the case studies reported in this paper use languages specifically designed for
model management tasks.

Frost et al. [14] have introduced a tool for static analysis of timing properties of
Java programs. The tool transforms the domain-specific model, which consists of the
program, the virtual machine, and the hardware models, to an Uppaal timed-automata
model. The paper does not report any use of MDE techniques.

A toolset to support design-space exploration of embedded systems was introduced
by Basten et al. [2]. It aims for the reuse of models between various domains, by

14

providing Java libraries to read design models written in its own specification language
and then transform them for use with other tools including Uppaal for design-space
exploration. If the toolset needs to support a new tool, one has to implement new
transformations using these libraries. Using a language not specifically designed for
such transformations leads to challenges in maintaining the toolset, which are in fact
stated as a future direction of research.

In the study by Fakih et al. [13], a tool named sdf2ta has been introduced for
analyzing timing bounds of SDF graphs. The tool takes an SDF graph defined using
the tool SDF3 and a hardware model defined separately, and automatically generates
an Uppaal timed-automata model. Similar to our tooling choice, they have used EMF
for the implementation of sdf2ta, however, it is not reported how the generation of the
timed-automata model is achieved.

Herber and Glesner [19] proposed a framework to verify hardware-software co-
designs using timed automata. It translates the co-design implemented in SystemC
to Uppaal’s timed automata format. This translation is automatically achieved by
the SystemC Timed Automata Transformation Engine (STATE) that is specifically
designed for SystemC-to-Uppaal transformations. STATE is implemented directly in
Java, which limits interoperability with other tools.

In the work by Hartmanns and Hermanns [18], a toolset has been introduced to
facilitate the reuse of various model checkers targeting the stochastic hybrid automata
formalism. The toolset uses a high-level compositional modeling language that serves
as an interoperability point among existing languages and tools. Conceptually, this
language is similar to a metamodel and the transformations from/to this language are
implemented using traditional compiler techniques.

The study by Glatz et al. [16] uses model checking to test distributed control
systems. The authors mathematically define a mapping from concepts in the control
systems domain to the timed-automata domain. In their approach, they suggest im-
plementing this mapping as a translation between the XML formats of these domains,
which can be seen as a textual model-based transformation.

6 Conclusions

We have demonstrated the use of MDE in the development of software bridging tools
that use Uppaal as a back-end analysis tool. Our approach uses metamodels as the
foundation to translate domain-specific concepts into timed-automata models and
queries; the results delivered by Uppaal are similarly translated back to the original
domain, providing experts with access to formal analysis techniques without requiring
additional training. We have presented five case studies in different domains to demon-
strate how our approach has been applied in practice with the aim of a higher level of
interoperability, faster software development and easier maintainability.

The principles we have presented here can be applied to formalisms and analysis
tools different from timed automata and Uppaal by replacing the central metamodels
uta, uqu and utr with suitable counterparts. Thus we expect our approach to be
generally applicable in the development of more software bridging tools which act
between DSLs and formal methods.

References

1. Ahmad, W., Yildiz, B.M., Rensink, A., Stoelinga, M.: A Model-Driven Framework
for Hardware-Software Co-design of Dataflow Applications. In: Proc.6th Int. Wks.

https://dx.doi.org/10.1007/978-3-319-51738-4_1
https://dx.doi.org/10.1007/978-3-319-51738-4_1

15

Cyber Physical Systems. Design, Modeling, and Evaluation. pp. 1–16. Cham (2017)
2. Basten, T., Hamberg, R., Reckers, F., Verriet, J.: Model-Based Design of Adaptive

Embedded Systems. Springer Publishing Company (2013)
3. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Petterson, P., Yi, W.,

Hendrink, M.: Uppaal 4.0. In: Proc. 3rd Int. Conf. Quantitative Evaluation of
Systems (QEST). pp. 125–126 (2006)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal Scheduling Using Priced
Timed Automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (Mar 2005)

5. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools, LNCS,
vol. 3098, pp. 87–124. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

6. Brandt, J.: Understanding attacks: Modeling the outcome of attack tree analysis.
In: 25th Twente Student Conference on IT. vol. 25. University of Twente (2016),
BSc. Thesis; see http://referaat.cs.utwente.nl/conference/25/paper

7. Bulychev, P., David, A., Larsen, K.G., Mikuc̆ionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: Uppaal-SMC: Statistical Model Checking for Priced Timed Automata.
In: Proc. 10th Wks. Quantitative Aspects of Programming Languages (2012)

8. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies.
Proc. Annu. Reliability and Maintainability Symposium pp. 286–293 (Jan 1990)

9. Dziwok, S., Gerking, C., Heinzemann, C.: Domain-specific Model Checking of
MechatronicUML Models Using Uppaal. Tech. Rep. tr-ri-15-346, Paderborn Uni-
versity (Jul 2015)

10. Dziwok, S., Pohlmann, U., Piskachev, G., Schubert, D., Thiele, S., Gerking, C.: The
MechatronicUML design method: Process and language for platform-independent
modeling. Tech. Rep. tr-ri-16-352, Software Engineering Dep., Fraunhofer IEM /
Software Engineering Group, Heinz Nixdorf Institute (Dec 2016), version 1.0

11. Eclipse Foundation, Inc.: XTend – modernized Java. https://www.eclipse.org/
xtend/index.html

12. Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Sci. Comput. Program. 2(3), 241–266 (1982)

13. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: State-based Real-time Analysis
of SDF Applications on MPSoCs with Shared Communication Resources. J. Syst.
Archit. 61(9), 486–509 (Oct 2015)

14. Frost, C., Jensen, C., Luckow, K.S., Thomsen, B.: WCET Analysis of Java Byte-
code Featuring Common Execution Environments. In: Proc. 9th Int. Wks. Java
Technologies for Real-Time and Embedded Systems. pp. 30–39. ACM (2011)

15. Gerking, C., Schäfer, W., Dziwok, S., Heinzemann, C.: Domain-specific model
checking for cyber-physical systems. In: Proc. 12th Wks. Model-Driven Engineer-
ing, Verification and Validation (MoDeVVa 2015). Ottawa (Sep 2015)

16. Glatz, B., Cleary, F., Horauer, M., Schuster, H., Balog, P.: Complementing testing
of IEC61499 function blocks with model-checking. In: Proc. 12th IEEE/ASME Int.
Conf. Mechatronic and Embedded Systems and Applications (MESA) (2016)

17. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transfor-
mation of Sequence Diagram Specifications to Timed Game Automata. In: Revised
Selected and Invited Papers 4th Int. Symp. Applications of Graph Transformations
with Industrial Relevance (AGTIVE). LNCS, vol. 7233, pp. 222–237 (2012)

18. Hartmanns, A., Hermanns, H.: The Modest Toolset: An Integrated Environment
for Quantitative Modelling and Verification. In: Proc. 20th Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems. pp. 593–598 (2014)

19. Herber, P., Glesner, S.: A HW/SW Co-verification Framework for SystemC. ACM
TECS 12(1s), 61:1–61:23 (Mar 2013)

https://dx.doi.org/10.1007/978-1-4614-4821-1
https://dx.doi.org/10.1007/978-1-4614-4821-1
https://dx.doi.org/10.1109/QEST.2006.59
https://dx.doi.org/10.1145/1059816.1059823
https://dx.doi.org/10.1145/1059816.1059823
https://dx.doi.org/10.1007/978-3-540-27755-2_3
http://referaat.cs.utwente.nl/conference/25/paper
https://dx.doi.org/10.4204/EPTCS.85.1
https://dx.doi.org/10.1109/ARMS.1990.67971
https://www.hni.uni-paderborn.de/pub/9121
https://www.hni.uni-paderborn.de/pub/9121
https://www.eclipse.org/xtend/index.html
https://www.eclipse.org/xtend/index.html
https://dx.doi.org/10.1016/0167-6423(83)90017-5
https://dx.doi.org/10.1016/0167-6423(83)90017-5
https://dx.doi.org/10.1016/j.sysarc.2015.04.005
https://dx.doi.org/10.1016/j.sysarc.2015.04.005
https://dx.doi.org/10.1145/2043910.2043916
https://dx.doi.org/10.1145/2043910.2043916
https://dx.doi.org/10.1109/MESA.2016.7587151
https://dx.doi.org/10.1109/MESA.2016.7587151
https://dx.doi.org/10.1007/978-3-642-34176-2_19
https://dx.doi.org/10.1007/978-3-642-34176-2_19
https://dx.doi.org/10.1007/978-3-642-54862-8_51
https://dx.doi.org/10.1007/978-3-642-54862-8_51
https://dx.doi.org/10.1145/2435227.2435257

16

20. Huistra, D.: A unifying model for attack trees. Research Project, University of
Twente http://essay.utwente.nl/69399/ (2015)

21. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Proc. 1st Int. Conf. Theory and Practice of Model Transformations (ICMT).
pp. 46–60 (2008)

22. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: Don’t miss the forest for the attack trees. Comput. Sci. Review 13-14,
1–38 (2014)

23. Kumar, R., Stoelinga, M.: Quantitative Security and Safety Analysis with Attack-
Fault Trees. In: Proc. IEEE 18th Int. Symp. High Assurance Systems Engg.
(HASE). pp. 25–32 (Jan 2017)

24. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative Attack Tree Analysis via
Priced Timed Automata. In: Proc. 13th Int. Conf. Formal Modeling and Analysis
of Timed Systems (FORMATS). pp. 156–171 (2015)

25. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the IEEE
75(9), 1235–1245 (Sep 1987)

26. Mohagheghi, P., Dehlen, V.: Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. In: Proc. European Conf. Model Driven Architectures
- Fountations and Applications (ECMDA-FA). LNCS, vol. 5095 (2008)

27. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.2. OMG Document Number
formal/2015-02-01 (http://www.omg.org/spec/QVT/1.2) (Feb 2015)

28. Ravn, A.P., Srba, J., Vighio, S.: A Formal Analysis of the Web Services Atomic
Transaction Protocol with Uppaal. In: Proc. 4th Int. Symp. on Leveraging Appli-
cations of Formal Methods, Verification and Validation (ISoLA). LNCS, vol. 6415,
pp. 579–593 (2010)

29. Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reli-
ability contered maintenance via statistical model checking. In: Proc. IEEE 62nd
Annu. Reliability and Maintainability Symposium (RAMS). IEEE (Jan 2016)

30. Ruijters, E., Stoelinga, M.: Fault tree Analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Review 15–16, 29–62 (2015)

31. Schivo, S., Scholma, J., Wanders, B., Camacho, R.A.U., van der Vet, P.E., Karpe-
rien, M., Langerak, R., van de Pol, J., Post, J.N.: Modeling Biological Pathway
Dynamics With Timed Automata. IEEE J. Biomed. Health Inform. 18(3), 832–839
(May 2014)

32. Schivo, S., Scholma, J., van der Vet, P.E., Karperien, M., Post, J.N., van de Pol,
J., Langerak, R.: Modelling with ANIMO: between fuzzy logic and differential
equations. BMC systems biology 10(1), 56 (2016)

33. da Silva, A.R.: Model-driven engineering: A survey supported by the unified con-
ceptual model. Comput. Languages, Systems & Structures 43, 139–155 (2015)

34. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling. In: Model-
Based Engineering of Embedded Real-Time Systems, pp. 57–76. Springer (2010)

35. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse modeling
framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

36. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-driven software
development: technology, engineering, management. John Wiley & Sons (2006)

37. Yildiz, B.M., Bochisch, C.M., Rensink, A., Aksit, A.: An MDE approach for mod-
ular program analyses. In: Proc. Modularity in Modelling Workshop (2017)

38. Yildiz, B.M., Rensink, A., Bockisch, C., Aksit, M.: A Model-Derivation Framework
for Software Analysis. In: Proc. 2nd Wks. Models for Formal Analysis of Real
Systems (MARS) (2017)

http://essay.utwente.nl/69399/
https://dx.doi.org/10.1007/978-3-540-69927-9_4
https://dx.doi.org/10.1016/j.cosrev.2014.07.001
https://dx.doi.org/10.1016/j.cosrev.2014.07.001
https://dx.doi.org/10.1109/HASE.2017.12
https://dx.doi.org/10.1109/HASE.2017.12
https://dx.doi.org/10.1007/978-3-319-22975-1_11
https://dx.doi.org/10.1007/978-3-319-22975-1_11
https://dx.doi.org/10.1109/PROC.1987.13876
https://dx.doi.org/10.1007/978-3-540-69100-6_31
https://dx.doi.org/10.1007/978-3-540-69100-6_31
http://www.omg.org/spec/QVT/1.2
https://dx.doi.org/10.1007/978-3-642-16558-0_47
https://dx.doi.org/10.1007/978-3-642-16558-0_47
https://dx.doi.org/10.1109/RAMS.2016.7447986
https://dx.doi.org/10.1109/RAMS.2016.7447986
https://dx.doi.org/10.1016/j.cosrev.2015.03.001
https://dx.doi.org/10.1016/j.cosrev.2015.03.001
https://dx.doi.org/10.1109/JBHI.2013.2292880
https://dx.doi.org/10.1109/JBHI.2013.2292880
https://dx.doi.org/10.1186/s12918-016-0286-z
https://dx.doi.org/10.1186/s12918-016-0286-z
https://dx.doi.org/10.1016/j.cl.2015.06.001
https://dx.doi.org/10.1016/j.cl.2015.06.001
https://dx.doi.org/10.1007/978-3-642-16277-0_3
https://dx.doi.org/10.4204/EPTCS.244.9
https://dx.doi.org/10.4204/EPTCS.244.9

	How to Efficiently Build a Front-End Tool for UPPAAL: A Model-Driven Approach

