
Abstract

Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an
important technique to estimate common dependability metrics, such as the system reliability and availability. A severe
drawback of Monte Carlo simulation is that the number of simulations required to obtain accurate estimations grows
extremely large in the presence of rare events, i.e., events whose probability of occurrence is very low, which typically
holds for failures in highly reliable systems.

This paper presents a novel method for rare event simulation of dynamic fault trees with complex repairs that requires
only a modest number of simulations, while retaining statistically justified confidence intervals. Our method exploits the
importance sampling technique for rare event simulation, together with a compositional state space generation method
for dynamic fault trees.

We demonstrate our approach using three parameterized sets of case studies, showing that our method can handle
fault trees that could not be evaluated with either existing analytical techniques using stochastic model checking, nor
with standard simulation techniques.

1. Introduction

The rapid emergence of robots, drones, the Internet-
of-Things, self-driving cars and other inventions, increase
our already heavy dependence on computer-based systems
even further. Reliability engineering is an important field
that provides methods, tools and techniques to identify,
evaluate and mitigate the risks related to complex systems.
Moreover, asset management is currently shifting towards
reliability-centered, a.k.a. risk-based, maintenance. This
shift also requires a good understanding of the risk involved
in the system, and of the effects of maintenance on the
reliability. Fault tree analysis (FTA) is one of the most im-
portant techniques in that field, and is commonly deployed
in industry ranging from railway and aerospace system
engineering to nuclear power plants.

A fault tree (FT) is a graphical model that describes how
failures propagate through the system, and how component
failures lead to system failures. An FT is a tree (or rather,
a directed acyclic graph) whose leaves model component
failures, and whose gates model how failures propagate
through the system, and lead to system failures. Standard
(or: static) FTs (SFTs) contain a few basic gates, like

IThis article is the extended version of a paper from SafeComp
2017 with the same title.

∗Principal corresponding author
Email addresses: e.j.j.ruijters@utwente.nl (Enno Ruijters),

daniel_reijsbergen@sutd.edu.sg (Daniël Reijsbergen),
p.t.deboer@utwente.nl (Pieter-Tjerk de Boer),
m.i.a.stoelinga@utwente.nl (Mariëlle Stoelinga)

AND and OR, making them easy to use and analyze, but
also limited in expressivity. To cater for more complex
dependability patterns, like spare management and causal
dependencies, a number of extensions to FTs have been
proposed.

One of the most widely used extensions is the dynamic
fault tree (DFT) [1], providing support for common pat-
terns in system design and analysis. More recently, mainte-
nance has been integrated into DFTs supporting complex
policies of inspections and repairs [2]. Both of these devel-
opments have increased the memory and time needed for
analysis, to the point where many practical systems cannot
be analyzed on current computers in a reasonable time.

One approach to combat the complexity of analysis is
to switch from analytic techniques to simulation. By not
constructing the entire state space of the system, but only
computing states as they are visited, memory requirements
are minimal and computation time can be greatly reduced.
This approach can be successfully applied to industrial
systems [3], but presents a challenge when dealing with
highly reliable systems: If failures are very rare, many
simulations are required before observing any at all, let
alone observing enough to compute statistically justified
error bounds.

This problem in simulating systems with rare events can
be overcome through rare event simulation techniques, first
developed in the 1950’s [4]. By adjusting the probabilities
to make failures less rare, and subsequently calculating a
correction for this adjustment, statistically justified results
can be obtained from far fewer simulations than would

Preprint submitted to Elsevier February 28, 2019

The final version of this article is available at https://doi.org/10.1016/j.ress.2019.02.004.

Rare Event Simulation for Dynamic Fault TreesI

Enno Ruijtersa,∗, Daniël Reijsbergenb, Pieter-Tjerk de Boerc, Mariëlle Stoelingaa

aFormal Methods and Tools, University of Twente, Zilverling, P.O. Box 217, 7500 AE Enschede, The Netherlands
bSingapore University of Technology and Design, Singapore

cDesign and Analysis of Communication Systems, University of Twente, Zilverling, P.O. Box 217, 7500 AE Enschede, The
Netherlands

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.ress.2019.02.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

otherwise be needed.
We present a novel approach to analyze DFTs with

maintenance through importance sampling. We adapt the
recently-developed Path-ZVA algorithm [5] to the setting
of DFTs. We retain the existing compositional semantics
by Boudali et al. [6] already used in current tools [7].
Using three case studies, we show that our approach can
simulate DFTs too large for other tools with events too rare
for traditional simulation techniques. Thus, our approach
has clear benefits over existing numerical tools, and tools
without rare event simulation: We can analyze larger DFTs,
producing results quicker and obtain narrow confidence
intervals.

Our approach. Our overall approach to rare event simu-
lation for DFTs relies on an on-the-fly conversion of the
DFT into a state-space model describing the stochastic
behaviour of the DFT. Given this model, we apply the
Path-ZVA algorithm for importance sampling to alter the
behaviour such that system failures become more probable.
We then sample simulation traces from this model, measur-
ing the unavailability of the DFT, and apply a correction
for the adjusted probabilities.

More concretely, we take the following steps:

1. Use the DFTCalc tool to compute state-space mod-
els for all elements of the DFT. Traditionally, one
would compute the composition of these elements
to obtain one model describing the behaviour of the
DFT. Our approach computes the necessary states
of the composition on-the-fly in the following steps.

2. Apply the Path-ZVA algorithm (explained in Sect. 3)
to adjust the transition probabilities to preferentially
direct the simulations along the most likely paths to
failures.

3. Sample traces of the adjusted model, storing how
much time of each trace was spent in unavailable (i.e.,
failed) states, and how much the total probability of
each trace was altered by step 3.

4. Average the unavailabilities of the traces, correcting
for the altered probability of each trace.

Related Work. Apart from DFTs and repairs, many more
extensions have been developed. For an overview we refer
the reader to [8]. Most current FTA formalisms support
repairs using per-component repair times [9]. More com-
plicated policies can be specified using repair boxes [10] or
the Repairable Fault Tree extension [11], however both of
these require exponentially distributed failure times of com-
ponents where our approach allows Erlang distributions.

A wide range of analysis techniques exist as well, again
summarized in [8]. Standard simulation methods date back
to 1970 [12], continuing to be developed until the present
day [3]. Rare event simulation has been used to estimate
system reliability since 1980 [13] and is still applied today
[14], although, to our surprise, we are not aware of any
approach applying rare event simulation specifically to fault

trees. An overview of importance sampling techniques in
general can be found in [15].

Aside from accelerating the simulation process as de-
scribed in this paper, various other methods of speeding
up (dynamic) fault tree analysis have been proposed. For
example, by analyzing static parts of the tree separate from
dynamic parts [16, 17]. Such techniques may be applica-
ble in combination with our proposed approach, by using
fast, standard methods for the static parts and rare event
simulation for the dynamic parts. Similarly, our approach
could be adapted to other extensions of (repairable) fault
trees that are analyzed using Monte Carlo simulation, such
as state/event fault trees [18].

Background. The original analysis method for DFTs was
a conversion to continuous-time Markov chains (CTMCs)
[1]. A CTMC is a state-space model of a sequence of
events, where the future evolution of the model depends
only on the current state. Formally, a CTMC C is a tuple
C = 〈S, P,E〉, where:

• S is a set of states numbered s0, s1, . . . , sn, of which
s0 is the initial state,

• P is a matrix of transition probabilities, where pij
denotes the probability of transitioning from state si
to sj in one step (note: ∀i

∑
j pij = 1 and ∀ipii = 0),

and

• E is a vector of exit rates, such that the time spent
after entering state si but before transitioning out of
the state is governed by an exponential distribution
with rate Ei; i.e., if we denote by T the time until
the next transition out of state si, then P (T ≤ t) =
1− e−Eit.

To simplify our illustrations, we often use λij = pijEi

to denote the transition rates. In this notation, each tran-
sition has its own transition time following an exponential
distribution with parameter λij , and whichever transition
out of the current state si occurs first is actually taken.

We sometimes abstract away the timed behaviour of a
CTMC, in which case we use the embedded discrete-time
Markov chain (DTMC) D = 〈S, P 〉 and ignore the times
at which transitions are taken.

A compositional analysis methods for DFTs was devel-
oped in [19] in terms of Input/Output Interactive Markov
Chains (I/O-IMCs). I/O-IMCs are an extension of Interac-
tive Markov Chains [20] that allow composition by means
of input and output actions. An I/O-IMC is defined as a
tuple I = 〈S,Act ,→, 〉, where:

• S is a set of states numbered s0, s1, . . . , sn, of which
s0 is the initial state,

• Act is a finite set of actions (also called signals),
partitioned Act = ActI ∪ActO ∪Act int where ActI

are input actions, ActO are output actions, and Act int

are internal actions (all disjoint),

2

• →⊆ S × Act × S is a set of interactive transitions,
and

• ⊆ S × R>0 × S is a set of Markovian transitions.

A Markovian transition (si, λij , sj) of an I/O-IMC be-
haves like a transition of a CTMC with rate λij , while
the interactive transitions allow multiple I/O-IMCs to be
composed into one larger I/O-IMC, as will be discussed in
Sect. 4.1.

As can be seen from the definitions above, all transition
times in a CTMC or I/O-IMC follow exponential distribu-
tions. Transition times that follow a different probability
distribution (e.g., Weibull or truncated normal distribu-
tions) can be approximated using a phase-type distribution
[21] — this allows us to remain within the CTMC frame-
work at the cost of increasing the state space size. In
this paper we often use times governed by Erlang distri-
butions, which are a subset of phase-type distributions, to
approximate more general probability distributions. Er-
lang distributions can be defined as the cumulative time
of a sequence of exponential distributions with identical
rates: If we let X1, X2, . . . , Xk be independent random
variables drawn from an exponential distribution with rate
λ, then X1 +X2 + . . .+Xk is governed by a (k, λ)-Erlang
distribution. Thus, an Erlang distribution can be easily en-
coded in a CTMC as a chain of transitions with exponential
transition times. We generally use Erlang-distributions to
approximate more general probability distributions, using
the two parameters (k and λ) to obtain the same mean and
variance as in the distribution being fitted. More precise
approximations can be obtained using more complex com-
binations of exponential distributions [21], although we do
not use these in this paper.

Some results of the case studies presented in this pa-
per are presented as 95% confidence intervals: Intervals
computed following a statistical sample such that one can
expect that 95% of the intervals constructed in this way
will contain the true value being estimated. We compute
such intervals using the Central Limit Theorem [22].

Contributions with respect to earlier version. The following
contributions of this paper are new since the publication
of [23]:

• Sect. 3 and 4 have been expanded to explain our
approach in greater detail.

• We present a new algorithm for converting the I/O-
IMC of the DFT into a CTMC, which allows the
analysis of a greater class of DFTs while guaranteeing
that the results are not affected by nondeterminism.

Organization of the Paper. This paper first explains fault
trees, DFTs, and repairable DFTs in Sect. 2. Sect. 3 de-
scribes rare event simulation, and the Path-ZVA algorithm
used in our approach. Next, our adaptation of rare event
simulation to DFTs is explained in Sect. 4. Our case studies
with their results are shown in Sect. 5, before concluding
in Sect. 6.

2. Fault Tree Analysis

Fault tree analysis (FTA) is a widely-used technique for
dependability analysis, and one of the industry standards
for estimating the reliability of safety-critical systems [24].
By decomposing the possible failures of the system into
different kinds of (partial) failures and further into elemen-
tary failure causes, the failure probabilities of the system as
a whole can be computed. Such quantitative analysis can
compute measures such as the system reliability (i.e., prob-
ability that the system remains functional for the duration
of its mission) and availability (i.e., the average fraction of
the time that the system in functional).

An FT is a directed acyclic graph where the leaves
describe failure modes, called basic events (BEs), at a
component level. Gates specify how the failures of their
children combine to cause failures of (sub)systems. The
root of the FT, called the top-level event (TLE), denotes
the failure of interest.

Standard, also called static, fault trees combine different
failure modes using boolean connectors, namely the AND-,
OR-, and VOT(k)-gates, failing when all, any, or at least k
of their children fail, respectively. The elementary failure
causes (called basic events) are usually given as either prob-
abilities describing the odds of failing within a fixed time
window, or with exponential failure rates describing the
probability of failure before any given time. For repairable
systems, repair times in standard fault trees are usually
also specified by exponential rates.

Example 1. Figure 1 shows an example of such a fault
tree. It models a case study from [2], studying part of
the interlocking system of a railway corridor. The system
consists of relay and high-voltage cabinets, redundantly
implemented such that a single cabinet of either type can
fail without causing a system failure. In the figure, the
event of interest (multiple cabinets failing) is described by
the OR-gate at the top. Its children are two VOT(2)-gates
and an AND-gate. The leaves of the tree are the BEs
describing the failures of individual relay and high voltage
cabinets.

2.1. Dynamic Fault Trees
Over the years, many extensions to FTs have been

developed [8]. One of the most prominent extensions is
the dynamic fault trees (DFT) model [1]. DFTs intro-
duce several new gates to cater for common patterns in
dependability models:

• The priority-AND (PAND) models order-dependent
effects of failures. It fails if and only if its left child
fails and then its right child. This is used e.g. to
model the difference between a fire detector failing
before or after a fire starts.

• The SPARE gate, modeling a primary component
with one or more spare elements. The spare elements
can have different failure rates when they are in use,

3

2 or more cabinets failing

2 cabinets fail with different causes 2 high voltage cabinets fail

2/n

2 relay cabinets fail

2/n

. . .Relay
cabinet 1

Relay
cabinet n

. . .HV
cabinet 1

HV
cabinet n

Relay cabinet
fails

HV cabinet
fails

. . .Relay
cabinet 1

Relay
cabinet n

. . .HV
cabinet 1

HV
cabinet n

Figure 1: Example fault tree of the relay cabinet case study. Due to redundancy, the system can survive the failure of any single cabinet,
however two failures cause system unavailability. The number of cabinets varies, and is indicated by n.

and can be shared between multiple gates. Shared
spare elements can only be used by one gate at any
time.

• The functional dependency (FDEP) gate which causes
all of its children to fail when its trigger fails. It is
used e.g. to model common cause failures, such as a
power failure disabling many components.

It should be noted that several different semantics for
DFTs have been developed over the years, some of which
contradict each other in some cases [25]. In this paper, we
use the semantics of the DFTCalc tool [2]. In particular,
we do not support the sequence-enforcing gate provided in
the original definition.

2.2. Repairable Fault Trees
Many practical systems are not just built and then

left on their own, instead repairs and maintenance are
often performed to keep a system functioning correctly
and correct failures when they occur. This maintenance is
crucial to the dependability of the system, as it can prevent
or delay failures. It is therefore important to consider the
maintenance policy when performing reliability analysis.

pristine lightly
degraded

moderately
degraded

extremely
degraded

failed

λ1 λ2 λ3 λ4

Figure 2: CTMC describing a basic event with multiple degradation
phases.

Standard fault trees support only simple policies of inde-
pendent repairs with exponentially distributed repair times
starting immediately upon component failure [9]. Various
extensions provide more complex policies, describing that
some repairs occur in sequential order rather than in par-
allel [10], or complex maintenance policies with preventive
inspections and repairs [3, 26].

Dynamic fault trees support both the simple model with
independent, exponentially distributed repair times, and
have been extended with complex policies with periodic
inspections and/or repairs [2]. We use this extension in this
paper. A key component of the implementation of more
advanced maintenance in (D)FTs is the non-exponential
basic event. The traditionally used exponential distribu-
tion is memoryless (i.e., the remaining time to failure is
independent of how long the component has already been
in operation), which does not accurately describe the be-
haviour of components subject to gradual wear. To support
wear and maintenance modelling, BEs in such DFTs can
progress through multiple phases of degradation, as de-
picted in Figure 2. Inspections can periodically check
whether some BEs have degraded beyond some threshold
phase, and repairs can return them to their undegraded
phase if they have degraded too much. Periodic replace-
ments simply return their BEs to their undegraded phase
periodically.

3. Rare Event Simulation

Monte Carlo simulation is a commonly applied tech-
nique to estimate quantitative metrics in cases where exact
solutions are impractical to compute, or where no methods
are known to compute them [27]. A common disadvantage

4

of such techniques is that many events of practical interest
occur only very rarely. In such cases, accurately estimat-
ing the probability of the event is difficult: unless a very
large number of simulation runs are performed, the event
may not be observed in any of the runs, or otherwise may
not be seen frequently enough to draw statistically sound
conclusions.

Reliability engineering is precisely a field where such
rare events are of primary interest: A highly reliable system,
by definition, only fails rarely. For example, the European
Rail Traffic Management System specifies that the proba-
bility of a transmitted message being corrupted must be
less than 6.8 · 10−9 [28]. Proving that a model meets this
level of reliability with 95% confidence requires at least
4.4 · 108 simulations (in the ideal case where no failure is
observed within those runs).

To allow simulation-based estimation of such low prob-
abilities, rare event simulation techniques have been devel-
oped. These techniques make the event of interest occur
more frequently, either by modifying the system being stud-
ied or the way simulation runs are sampled, and afterwards
compensate for the artificially increased probability.

The main approaches to rare event simulation can be
divided into two categories: importance splitting and im-
portance sampling. Both of these were developed in the
early days of computing [4].

Splitting modifies the simulation engine to select those
sample runs that are likely to reach the event of interest. In
particular, the engine begins by simulating runs as usual,
and tracks how ‘close’ each run gets to the interesting
event. This ‘closeness’ is measured by the importance
of the current simulation state at any given time. The
simulation engine then begins simulating normally, but
starts additional runs from states of high importance. This
way, the additional simulation runs are more likely to
eventually reach the rare event.

Many different techniques for importance splitting exist
with different procedures for determining importances, and
deciding how many additional simulation runs to start at
which states. For an overview, we refer the reader to [29].

Importance splitting is most useful for systems where
the rare event is reached after a large number of transitions,
each with a moderately low probability. Such systems
provide many opportunities for restarting the simulation
runs, getting incrementally closer to the target state. In
the context of DFTs, however, the target (system failure)
is usually reached after only a few transition of very low
probability, namely the failures of a few highly reliable
components.

Importance sampling. For the aforementioned reason, our
approach does not use importance splitting, but rather
importance sampling. A survey of this technique can be
found in [15]. The intuition behind importance sampling is
that the event of interest is made more probable by altering
the probability distributions of the system being simulated.
When drawing a simulation run, the simulator also records

I

B

G

1%

99%

(a) Original system

I

B

G

10% L =
1
10

90% L = 99
90

(b) Modified system

Figure 3: Example of a change of measure for importance sampling
for a discrete-time model. The event of interest is reaching state B. In
the original system this event has a probability of 1%, while a possible
modification for importance sampling increases this probability to
10%, giving a likelihood ratio of L = 1%

10%
= 1

10
.

the likelihood ratio of the sampled values, defined as the
probability of the current run in the original system divided
by its probability in the modified system.

In MC simulation without importance sampling, N
simulation runs are performed, and the i’th simulation run
is recorded as an outcome Ii which is 1 if the event of
interest was reached, and 0 otherwise. The probability of
reaching the event is then estimated as:

γ̂orig =
1

N

N∑
i=1

Ii

In importance sampling, the simulator also tracks the
likelihood ratio Li of the run, defined as the probability
of drawing that run in the original system divided by the
probability of the run in the modified system (formally: if
the i’th simulation run observes trace π, then Li =

Porig(π)
PIS (π)

).
Details of the computation of Li depend on the system
being simulated.

Example 2. We consider the system in Figure 3. Suppose
we observe the path I → B. Now, in the original system,
we have Porig(I → B) = 0.01, while in the modified system
we have PIS (I → B) = 0.1. We thus have the likelihood
ratio LI→B = 0.01

0.1 = 0.1.

Having obtained the likelihood ratios Li, the estimator
of the probability of interest is then:

γ̂IS =
1

N

N∑
i=1

IiLi

In this way, if the rare event is reached on a run that
was originally much less likely (very low Li), it counts very
little towards the probability estimate. In contrast, if the
rare event is reached on a run with an artificially decreased
probability (Li > 1), it has a higher impact on the estimate.
Should the event be reached via a path with an unchanged
probability (Li = 1), its effect on the estimate is also
unchanged compared to normal MC simulation.

Example 3. Figure 3a shows a discrete-time Markov chain
which, from initial state I, has a 1% probability of reaching

5

a bad state B, and a 99% probability of reaching the good
state G. If one were to estimate the probability of reaching
B by standard MC simulation with 100 runs, there is a 36%
probability of not observing B at all. In the most likely case
(1 observed instance), the 95% confidence interval for the
probability is [0.0024, 0.0545] (using the Clopper-Pearson
method [30]).

If one makes the rare event 10 times as likely, as shown
in Figure 3b, the same 100 simulations will observe far
more runs reaching B. In the most likely case of observing
10 runs reaching G, a 95% confidence interval of the origi-
nal system (compensating for the increased likelihood) is
[0.0049, 0.0176], over four times as precise as the original
estimate.

Change of Measure. While the general idea behind im-
portance sampling is simple, making the interesting but
rare event less rare (i.e., increasing the probability measure
evaluated at the event) and multiplying the observed prob-
ability by how much less rare it is, actually finding a good
way of making this event more likely can be more involved.
This process is called the change of measure (CoM).

In general, one wants to make transitions (in our setting,
component failures) that bring the system closer to the goal
(e.g., system failure) more likely, while transitions leading
away from the goal (e.g., component repairs) less likely.
In other words, the likelihood ratio of transitions moving
towards the goal should be below 1, while transition moving
away from the goal should be above 1. However, choosing
these transitions poorly can produce estimators with higher
variance than standard MC simulation. For example, one
could make the most reliable components more likely to fail.
This could lead the simulator to find many runs in which
these components fail, but such runs have low contributions
(i.e., low likelihood ratios). The runs in which less reliable
components fail, which are normally more probable, become
even less likely, and thus poorly estimated. Particularly
bad choices of CoM can even produce estimators that are
biased or have infinite variance.

The ‘holy grail’ of importance sampling is the zero-
variance estimator (ZVE) [4]. That is a system modified in
such a way that the event of interest is always reached, and
the likelihood ratio is in fact the probability of reaching the
event in the original system Po. When such an estimator
is used, each simulation contributes 1

N IiLi = 1
N 1Po, and

thus the estimated probability is a constant regardless of
the number of simulations. Unfortunately, obtaining this
zero-variance estimator requires knowledge of Po which is
the value being estimated to begin with. Therefore, any
practical technique will, at best, approximate the ZVE
[31]. The Path-ZVA algorithm used in our approach builds
such an approximation (hence the name: zero-variance
approximation based on dominant paths).

Example 4. Figure 4a shows a discrete-time Markov chain,
in which we estimate the probability of reaching the goal

(rightmost) state. The actual probability is clearly 0.93 =
0.729.

Figure 4b shows a zero-variance estimator of this proba-
bility. Every sample run will reach the goal state, and thus
yield outcome Ii = 1. Every sample run also has the same
likelihood ratio, namely 0.93 = 0.729. Thus, each simula-
tion estimates the probability to be the true probability of
0.729. In this example, the ZVE is easy to construct, as
there is only one path reaching the goal state, so we simply
force this to always be the path sampled.

Figure 4c illustrates the downside of a poorly chosen
change of measure: if we do not use our knowledge of the
path to the goal state, and simply make each transition
equally likely, we end up reducing the likelihood of reaching
the goal. We thus obtain a greater variance than in the
original system.

4. Our approach: FTRES

Our overall approach to rare event simulation for DFTs,
implemented in our tool FTRES (Fault Tree Rare Event
Simulator), relies on a conversion of the DFT into an
input/output interactive Markov chain (I/O-IMC). This
I/O-IMC is a Markovian model describing the behaviour
of the DFT. Given a DFT, our analysis technique consists
of the following steps:

1. Use the DFTCalc tool to compute I/O-IMCs for all
elements of the DFT.

2. Apply the steps of the Path-ZVA algorithm, as ex-
plained in Sect. 4.3, to adjust the transition prob-
abilities and compute the corresponding likelihood
ratios. Since only the most likely paths receive altered
probabilities, the rest of the model can be computed
on-the-fly.

3. Sample traces of the adjusted model, ending each
trace when it completes a cycle (i.e., returns to the
initial state), storing the likelihood ratio Li and time
spent in unavailable (i.e., failed) states Zi.

4. Sample traces of the original model, again one cycle
per trace, storing the total time of the cycle Di,

5. Average the total time D and unavailable time ZL of
the traces, multiplied by the likelihood ratios. Now
ZL/D is the output estimated unavailability.

In our approach, we follow the semantics of [6], which
describes the behaviour of dynamic fault trees as I/O-IMCs.
These semantics were extended in [32] to include periodic
maintenance actions. One of the major benefits of these
semantics is that the I/O-IMC is specified as a parallel
composition of many smaller I/O-IMCs, each of which
models one element (i.e., gate, basic event, or maintenance
module) of the DFT.

4.1. Compositional Fault Tree Semantics
The analysis used in this paper follows the compo-

sitional semantics in terms of input/output interactive

6

Markov chains given in [6], with subsequent extensions for
maintainable systems [32]. This compositional approach
converts each element of the DFT (i.e., gate and basic
event) to an I/O-IMC, and composes these models to ob-
tain one large I/O-IMC for the entire DFT. Intermediate
minimisation helps to keep the size of the state-space to a
minimum, allowing the analysis of larger models.

For repairs, we follow the extension introduced for Fault
Maintenance Trees (FMTs) [3], in which inspection and
repair modules periodically examine the condition of at-
tached basic events, and perform maintenance as needed
depending on the conditions of the BEs.

Example 5. Figure 5 shows the I/O-IMC of an inspec-
tion module (IM). The dashed transitions denote Markovian
transition governing the times at which inspections are per-
formed. The solid-lined transitions are decorated with input
and output actions that allow the IM to communicate with
its attached BE whether the BE has reached the mainte-
nance threshold, and with a repair module to conduct a
repair.

Figure 6 shows the I/O-IMC of a repairable basic event.
When the BE degrades from the ‘okay’ to the ‘degraded’ state,
it communicates to the associated IM that the BE needs
repair. Subsequently, it will either be repaired, receiving the
‘repair?’ signal from a repair module, or eventually fail.

I/O-IMCs are a modelling formalism combining contin-
uous-time Markov chains with discrete actions (also called
signals). They have the useful property of being compos-
able, as the signals allow several I/O-IMCs to communicate
[6].

Example 6. An example of this composition is shown in
Figure 7. The input signals (denoted by a ‘?’) can only be
taken when the corresponding output signal (denoted by ‘!’)
is taken. Internal actions (denoted by ‘;’) and Markovian
transitions (denoted by Greek letters) are taken indepen-
dently of the other modules. If multiple non-Markovian
transitions can be taken from a state, which transition is
taken is nondeterministically chosen.

In this example, all component models begin in their
initial states. From t0 the transition ‘b?’ cannot be taken
unless the output transition ‘b!’ is also taken, so both
initial states can only perform their Markovian transitions.

s0 s1 s2 s3

s5 s6 s7 s8 s9

λi λi λi

λi

λi λi λi λi

threshold? threshold? threshold? threshold?

start_rep!

Figure 5: I/O-IMC of an Inspection module with Erlang-distributed
time between inspections. As time progresses, the module advances
towards the states on the right, until an inspection is performed
returning the module to state s0. If no threshold signal is received,
the model remains in the top row of states, and the transition s3 → s0
performs no action during the inspection. When a threshold signal is
received, the model moves to the bottom row, waits until the time
an inspection is performed (i.e., state s9 is reached), signals that a
repair is needed, and moves back to the initial state.

Assuming the leftmost model takes its transition with rate
λ first, the composition enters state s1, t0. From here, two
options are possible: (1) the internal action ‘a;’ from s1
to s2 can be taken, leaving the rightmost model in state
t0, or (2) the output transition ‘b!’ from s1 to s3 can be
taken together with the input transition ‘b?’ from t0 to t1.
In the latter case, the composed model takes a transition
‘b!’ allowing it to be composed with yet more models, and
enters state s3, t1, from which neither component model can
take further transitions. If the internal action was taken
instead, the transition from t0 to t2 with rate µ remains
possible, leading to the terminal state s2, t2.

4.2. Reducing I/O-IMCs to Markov Chains
Step 2 of our approach involves computing the parallel

composition of the I/O-IMCs of the elements of the DFT.
Our technique requires that the (composed) I/O-IMC be
reduced to a Markov Chain, which means resolving all
nondeterminism. In our setting, we assume that all non-
determinism is spurious (i.e., how the nondeterminism is
resolved has no effect on the computed availability). There-
fore, if we are in a state where we can choose an interactive
transition, we apply the maximal progress assumption[33]
and take this transition. If multiple interactive transitions

0.9 0.9 0.9

0.1 0.1 0.1

(a) Original system: Variance ≈ 0.198

1 1 1

0 0 0

L = 9
10 L = 9

10 L = 9
10

(b) Zero-variance estimator: Variance = 0

0.5 0.5 0.5

0.5 0.5 0.5

L = 9
5 L = 9

5 L = 9
5

(c) Worse estimator: Variance ≈ 3.72

Figure 4: Examples of different changes of measure in a discrete-time system and their effects variance of the estimator of the probability to
reach the red state.

7

s0

Good

s1

Okay

s2

Degraded

s3

Failed

λ

threshold!
λ

fail!
λ

repair?

Figure 6: Illustration of the I/O-IMC of a repairable basic event in-
cluding communication signals (interactive and Markovian transition
combined into one transition for brevity).

can be taken, we verify that all paths of only interactive
transitions lead to the same (Markovian) state. Thus we are
only left with states with only Markovian transitions, which
can be used as an input for the Monte Carlo simulation.

In more detail, we check after every Markovian transi-
tion that the directed graph formed by interactive transi-
tions from the current state always leads to the same set
of Markovian transitions: From the current state, we ap-
ply Tarjan’s algorithm [34] to identify the bottom strongly
connected components (BSCCs), excluding Markovian tran-
sitions. We then verify that the exit rates and outgoing
(Markovian) probability distributions are the same for all
states in these BSCCs. There are now three possibilities:

• One or more BSCCs has no outgoing Markovian
transitions. In this case, we abort the analysis since
the model is ill-defined.

• Different states in the BSCCs have different exit rates
or outgoing probability distributions. Here, we also
abort the analysis with an error message that possibly
non-spurious nondeterminism has been detected.

• All states in the BSCCs have the same exit rate
and outgoing probability distributions. In this case,
we replace the outgoing transitions from the current
state by this rate and distribution.

We note that this approach does not exclude IMCs
with interactive cycles (i.e., Zeno runs), we merely require
that every state on such a cycle has the same Markovian
behaviour.

Compared to the algorithm described in the previous
version of this paper [23], this algorithm has two advan-
tages:

• We can analyze a larger set of models, since we previ-
ously excluded any DFT for which a syntactic check
of the DFT identified possible nondeterminism. Our

s0

s2

s1

s3

λ

a; b!

t0

t2

t1

µ

b?

||

s0, t0 s1, t0

...

s3, t1

s2, t0 s2, t2

λ

µ a;

b!

µ
=

Figure 7: Example of the partial parallel composition of two I/O-
IMCs.

current analysis is still conservative, i.e., we still ex-
clude some DFTs in which nondeterminism does not
affect the result, but we now allow models that turn
out not to have nondeterminism within the states
reached by the simulation.

• We verify that any nondeterminism is definitely spu-
rious, thereby ensuring that we have not missed any
potential problem cases in the syntactic checks on
DFTs.

4.3. The Path-ZVA Algorithm
Many different methods have been proposed to find a

good change of measure. In our approach, we apply the
Path-ZVA algorithm [5, 35]. This is an algorithm with
provably good performance on a large class of Markovian
models, making it particularly suited for simulation of
DFTs. The algorithm also does not require the exploration
of the entire state space, but only of those states on dom-
inant paths (i.e., paths with the fewest low-probability
transitions) to the target state(s).

Path-ZVA produces a CoM suitable for estimating the
probabilities of events of the form “reaching set of states A
(goal states), starting from state B (initial state), and before
reaching a state in set C (taboo states)”, where the system
must frequently visit some states in C. In our setting, the
goal states are those states in which the system has failed,
while the initial state is the state in which the system
is in perfect condition. The initial state is also the only
taboo state. This means that we estimate the probability
“System failure occurs before the system is repaired to a
perfect state, starting from a perfect-condition system”.

The CoM can also be used to estimate the fraction of
time the system spends in the goal states, allowing us to
compute the unavailability (average fraction of time that
the system is down). Both for the time spent in A and the
probability of reaching A, a point estimate and a confidence
interval are returned.

Given these properties, Path-ZVA is very suitable for
estimating the unavailability of a multi-component system,
as is typically the case in DFTs, as long as the system is
fully repairable (so the taboo/initial state C is frequently
reached), and all failure and repair times can be described
using a Markovian model.

The intuition of the Path-ZVA algorithm is that it first
finds, for each state, the minimal distance from that state to
the target. This distance is typically measured as the total
rarity of the transitions that need to be taken before the
target is reached. The algorithm then adjusts the transition
rates according to the destination states’ distances, so that
states closer to the target become more likely, and states
further away from the target become less likely.

This model relies on the transition rates being described
using a rarity parameter ε. Each possible path to the event
of interest consists of a number of transitions of the Markov
chain, each of which has a rate of the form r · εk. The
dominant paths are those paths in which the sum of the

8

s3 s0 s1 s2

λ = 1 = ε0

λ = 1 = ε0 λ = 0.01 = ε2

λ = 1 = ε0 λ = 1 = ε0

λ = 0.02 = 2ε2

λ = 0.001 = ε3

d0 = 4 d1 = 2 d2 = 0d3 = 4

Figure 8: Illustration of the Path-ZVA model in a CTMC. We are interested in the probability of reaching the red state (the goal state),
starting from the green state (the initial state), before returning to the green state (also the taboo state). We parameterize all transition rates
with a rarity parameter ε = 0.1. Distances computed by Path-ZVA importance sampling are written in blue.

powers k of ε are smallest. In the limit of ε ↓ 0, these paths
dominate the total probability of reaching the target.

Example 7. Figure 8 shows an example of how the dis-
tances are computed by Path-ZVA. The target is state s2,
which thus has a distance d2 = 0. State s1 can reach the
target in one transition with rate 2ε2, i.e. rarity 2, and
thus has distance d1 = 2. The most likely path from s0 to
the target is via s1, and both transition in the path s0s1s2
have rarity 2, so the distance is d0 = 2 + 2 = 4. Finally,
The most probable path from s3 is the path s3s0s1s2, giving
distance d3 = 0 + 2 + 2 = 4. Note that the path s3s1s2
is shorter in number of transitions, but has a higher total
rarity (5), and is therefore not the most likely path (for
ε << 1).

Note that existing work assumes that this parameter-
ization is given, and we are unaware of any systematic
approach to converting models with known rates to ε-
parameterized versions. In this paper, we fix a value of
ε < 1 (typically ε = 0.01), and compute k and r for each
transition such that 1 < r < 1

ε .
Once the dominant paths have been found, the states

on these paths have their outgoing transition probabilities
weighted by the distances of their destination states. For
example, if a state si has two transitions with probability
1
2 to destinations with distances dk = 2 and dl = 3, we
compute the transition weights wik = 1

2ε
2 and wid = 1

2ε
3.

We then normalize these weights to obtain probabilities,
giving pISik = ε2

ε2+ε3 and pISil = ε3

ε2+ε3 (for ε = 0.1, this
means pISik ≈ 0.9 and pISil ≈ 0.1). For the continuous-
time setting, these new probabilities are multiplied by the
original exit rate of the state, so that the total exit rate
is unchanged by the Path-ZVA algorithm. Since we are
calculating steady-state unavailability, the probability of
reaching an unavailable state is determined only by the
relative probabilities of the transitions, not by the total
exit rate, so the unchanged exit rate does not affect the
performance of the estimation.

As an optimization, once we know the distance d0 from
the initial state to the target, we know that all states
further than d0 from the target or the initial state will
never be on a dominant path. We can leave the transition

rates from these states unchanged as they will have only a
very small contribution to the total probability (a vanishing
contribution in the limit of ε ↓ 0). This means that the
distance-finding algorithm only needs to explore a subset
of the state space (typically several orders of magnitude
smaller than the full state space) containing the potentially
dominant paths. More details can be found in [5].

Thus, Path-ZVA takes a Markov chain with initial state
s0 and target state sT , with the transition probability from
state si to state sj given by pijε

kij . We now perform the
following procedure:

1. Perform a breadth-first search, starting in s0, to find
a path st0st1 · · · stn−1

stn with t0 = 0 and tn = T , ∀i :
ptitj > 0, and with minimal distance d0 =

∑n−1
i=0 =

kti,ti+1 .
2. Decorate every state si with its distance to the initial

state dIi .
3. Store the states Λ = {si|dIi ≤ d0}.
4. Store the states Γ = {sj /∈ Λ|∃si ∈ Λ : pij > 0} that

can be reached in one transition from Λ.
5. Using a backward search from sT , decorate every

state si ∈ Λ ∪ Γ with its minimal distance to the
target di.

6. For every state si ∈ Λ, compute the new outgoing
transition probabilities:
(a) For every state sj , compute wij = pijε

kij εdj .
(b) Normalize the new transition probabilities, such

that for every state sj we let p′ij = wij/
∑

k wik.
(c) Compute the likelihood ratio of the transition

Lij =
pijε

kij

p′
ij

.
7. For every state si /∈ Λ, leave the transition probabili-

ties unchanged (i.e., ∀jp′ij = pijε
k
ij), giving likelihood

ratio Lij = 1.

Under mild conditions, it can be proven that the method
leads to estimators having the desirable property of Bounded
Relative Error [5]. This means that as the event of interest
gets rarer due to rates in the model being chosen smaller,
the estimator’s confidence interval width shrinks propor-
tionally to the probability of interest, making its relative
error bounded (cf. [36]). That is, if we have a model
parameterized by a rarity factor ε, we denote by γ(ε) the

9

probability of interest of the model, and by σIS (ε) the stan-
dard deviation of the estimated probability obtained using
importance sampling (using Path-ZVA), then we have that
limε↓0

σIS (ε)
γ(ε) < ∞. This is not the case for standard MC

simulation without rare event simulation.

Example 8. To summarize our approach, Figure 9 illus-
trates the steps on a simple DFT with two components, and
periodic repair.

1. We convert every element of the DFT in Figure 9a
into an I/O-IMC shown in Figure 9b.

2. We compose these I/O-IMCs and remove the non-
Markovian transitions, obtaining the model shown in
Figure 9c. In this transformation we also rewrite the
transition rates to include the rarity parameter ε. By
searching this model, we identify that we can reach
the failed state in one transition.

3. We identify all paths reaching the goal (s1) in one
transition, which is only the blue transition (s0 → s1)
in Figure 9c.

4. Applying Path-ZVA, we increase the likelihood of
the transitions along the previously identified path,
resulting in the model shown in Figure 9d.

5. We draw simulation traces from the adjusted model.
Each trace contains one cycle, and we keep track of
the time spent in unavailable states, and the likelihood
ratio of the trace (the product of the likelihood ratios
of the transitions in the trace). For example, we can
draw three traces (in reality one would draw many
thousands of traces):
(a) t0t0 (L1 = 5

5+3ε/
5
8 (5+3ε)

5+3ε = 5
5
8 (5+3ε)

≈ 7.5) with
no time in unavailable states (Z1 = 0).

(b) t0t2t0 (L2 ≈ 0.23) with no unavailable time
(Z2 = 0).

(c) t0t1t0 (L3 ≈ 0.15) with unavailable time Z3 =
0.196. (sampled from an exponential distribution
with mean 1

5 for the unavailable state t1).
6. We draw simulation traces from the original model,

and we keep track of the total time of the cycle. We
again draw three traces:
(a) s0s0 with total time D1 = 0.035 (sampled from

an exponential distribution with mean 1
5.3).

(b) s0s0 with total time D2 = 0.301.
(c) s0s2s0 with total time D3 = 0.033 + 0.123 =

0.156.
7. Finally, we combine the samples to obtain our average

unavailability. For the samples drawn above, we would
obtain ẐL = 1

3 (L1Z1 + L2Z2 + L3Z3) ≈ 0.029, D̂ =
1
3 (D1 +D2 +D3) ≈ 0.164, and Û = ẐL

D̂
≈ 0.18.

More detailed statistical measures, such as confidence
intervals, can also be computed.

4.4. Tooling
For our analysis, we use the models of the DFT elements

produced by DFTCalc, as well as its description of how to

compose them. In this way, we ensure that our semantics
are identical to those used in the existing analysis.

DFTCalc produces IMCs for the DFT elements, and
a specification describing how the IMCs are composed. It
then uses the CADP [37] tool to generate the composed
IMC which can be analysed by a stochastic model checker
such as IMCA [38] or MRMC [39].

Our tool, FTRES, instead uses the models and compo-
sition specification to generate the composition on the fly,
and applies the importance sampling algorithm to compute
the unavailability of the model.

Figure 10 shows how the various programs interact to
obtain numerical metrics from a (repairable) DFT. First,
a DFT is input to DFTCalc, and its dft2lntc program
converts it into a three-part state-space model:

• Each element of the DFT is specified as a LOTOS
NT [40] ‘.lnt’ file.

• A ‘.exp’ file [41] provides a specification for the compo-
sition of the elements (i.e., which signals synchronize
in which models).

• A ‘.svl’ [42] file specifying options regarding the com-
position process (e.g., which state-space minimization
steps to perform).

For the analytic solution, DFTCalc then uses the CADP
toolset [37] to compose the models into one I/O-IMC (the
‘.bcg’ file in the diagram), and translates this model into
the input to a model-checking tool which computes the
desired metric.

FTRES does not generate the full composed state-space,
but rather uses CADP to generate each element’s state-
space separately (stored in a ‘.aut’ file), and keeps the
composition specification in the ‘.exp’ file. These are then
used to generate the needed states on the state-space on
the fly during the importance sampling process.

5. Case Studies

We evaluate the effectiveness of the importance sam-
pling analysis method described in this paper on three
parameterized case studies. We compare our FTRES tool
to the DFTCalc tool, which evaluates DFTs numerically
through stochastic model checking [7], and to a standard
Monte Carlo simulator (MC) built into FTRES without
importance sampling.

The case studies we use are parameterized versions of
one DFT taken from industry and two well-known bench-
marks from the literature. The industrial case models a
redundant system of relays and high-voltage cabinets used
in railway signalling, and was taken from [2]. The other
two cases are the fault-tolerant parallel processor (FTPP)
[1] and the hypothetical example computer system (HECS)
[43].

10

G

A B

Exp
(

1
10

)
Erlang

(
2, 2

10

)
R

Exp(5)

(a) Repairable fault tree (the repair box
R periodically repairs connected compo-
nents)

1
10 failA!

repair?

A
2
10

2
10 failB !

repair?

repair?

B

failA?

failB?

fail!

repair?

G

5

repair!
R

(b) I/O-IMCs

s0 s1

s2

ε

2ε
2ε ε

5

5

5

(c) Composed model converted to CTMC
(ε = 1

10 , all failed states collapsed into s1)

t0 t1

t2

1
8 (5 + 3ε)

2
8 (5 + 3ε)

2
8 (5 + 3ε) 1

8 (5 + 3ε)

5
8 (5 + 3ε)

5

5
8 (5 + 3ε)

(d) Adjusted CTMC after performing the
calculations of step 6 of Path-ZVA

Figure 9: Example of the steps to apply importance sampling to a DFT. Dashed arrows indicate transitions with exponentially distributed
delay times, solid arrows indicate transitions with no delay or delayed by synchronizing actions.

11

Experimental Setup. For each of the cases, we compute the
long-run unavailability (exact for DFTCalc, 95% confidence
interval for FTRES and MC).

The failure times of the basic events are modelled as
exponential distributions in the HECS case (following [43]),
while those for the railway cabinets and FTPP cases are
modelled as an Erlang distribution where the number of
phases P is a parameter ranging from 1 to 3 phases; clearly,
P = 1 corresponds to the exponential distribution.

We measure the time taken (with a time-out of 24 hours)
and the memory consumption in number of states (which
is negligible for MC). For DFTCalc we measure both peak
and final memory consumption. Simulations by FTRES
(after the CoM is computed) and MC were performed for
10 minutes.

All experiments were conducted on a 2.10 GHz Intel®
Xeon® E5-2683 v4 processor and 256 GB of RAM.

5.1. Railway Cabinets
This case, provided by the consulting company Movares

in [2], is a model of a redundant system of relay and high-
voltage cabinets used in railway signalling.

The model, shown in Figure 1, comprises two types of
trackside equipment used in the signalling system: Relay
cabinets house electromechanical relays that respond to
electronic controls signals by switching electrical power to
e.g. switch motors and signal lights. Relays are also a safety-
critical part of the interlocking system, as they are wired
in such a configuration as to prevent safety violations such
as moving switches in already-occupied sections of track.
The high-voltage cabinets provide connections from the
local power grid to operate the relays and other electrically-
powered systems.

We consider several variants of the FT for given param-
eter values. We augment the FT with an inspection module
monitoring all the BEs in the FT. If the degradation phase
of any BE exceeds the threshold phase (1 phase before the
failure) at the time of inspection, a repair is triggered to

Unavailability
N P DFTCalc FTRES MC

R
ai

lw
ay

ca
bi

ne
ts

2 1 4.25685 · 10−4 [4.256; 4.258] · 10−4 [4.253; 4.278] · 10−4

3 1 7.71576 · 10−4 [7.712; 7.718] · 10−4 [7.706; 7.743] · 10−4

4 1 1.99929 · 10−3 [1.991; 2.000] · 10−3 [1.975; 2.003] · 10−3

2 2 4.55131 · 10−8 [4.547; 4.569] · 10−8 [3.214; 5.599] · 10−8

3 2 6.86125 · 10−8 [6.752; 7.046] · 10−8 [5.092; 8.682] · 10−7

4 2 2.38069 · 10−7 [2.275; 2.434] · 10−7 [1.889; 4.991] · 10−7

2 3 5.97575 · 10−12 [5.757; 6.408] · 10−12 —
3 3 7.51512 · 10−12 [4.637; 7.042] · 10−12 —
4 3 — [3.272; 8.620] · 10−12 —

F
T

P
P

1 1 2.18303 · 10−10 [2.182; 2.184] · 10−10 —
2 1 2.19861 · 10−10 [2.198; 2.199] · 10−10 —
3 1 2.21420 · 10−10 [2.213; 2.215] · 10−10 —
4 1 — [2.226; 2.232] · 10−10 —
1 2 1.76174 · 10−20 [1.761; 1.762] · 10−20 —
2 2 1.76178 · 10−20 [1.761; 1.763] · 10−20 —
3 2 — [1.761; 1.762] · 10−20 —
4 2 — [1.760; 1.763] · 10−20 —

N k
H

E
C

S

1 1 4.12485 · 10−5 [4.124; 4.126] · 10−5 [4.079; 4.156] · 10−5

2 1 3.02469 · 10−9 [3.022; 3.026] · 10−9 [0; 9.040] · 10−9

2 2 8.24940 · 10−5 [8.247; 8.251] · 10−5 [8.218; 8.338] · 10−5

3 1 3.11891 · 10−13 [3.103; 3.128] · 10−13 —
3 2 9.07344 · 10−9 [9.060; 9.076] · 10−9 [8.153; 20.70] · 10−9

3 3 1.23736 · 10−4 [1.236; 1.238] · 10−4 [1.234; 1.251] · 10−4

4 1 — [3.902; 4.364] · 10−17 —
4 2 — [1.239; 1.252] · 10−12 —
4 3 — [1.813; 1.818] · 10−8 [0; 8.352] · 10−9

4 4 — [1.648; 1.651] · 10−4 [1.621; 1.657] · 10−4

Table 1: Comparison of the unavailabilities computed by DFTCalc,
FTRES, and MC simulation for the case studies with N cabinets/pro-
cessor groups/HECS replications, P degradation phases per BE for
the railway cabinets and FTPP cases, and k required functional
replications for the HECS case.

DFT

dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

DFTCalc

dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

Results

Reliability

FTRES

CADP
.exp

.aut
Importance sampling

Availability

Figure 10: Diagram of the workflow of FTRES and DFTCalc.

12

101

102

103

104

T
im

e
(s

)

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc SMC DFTCalc gen. FTRES sim. FTRES search

Figure 11: Processing times for the different tools: Times for model
generation (gen.) and stochastic model checking (SMC, negligible
compared to model generation time) for DFTCalc, and for the graph
search and simulation phases for FTRES (calculation for the change-
of-measure are performed during the simulation). Bars reaching the
top of the graph reached the time-out of 24 hours.

replace all degraded BEs. The time between inspections is
governed by an Erlang distribution with two phases, and a
mean time of half a year. We vary the number of cabinets
in the system from 2 to 4.

Table 1 shows the results of the FTRES, DFTCalc,
and MC tools. We note that, whenever DFTCalc is able
to compute a numerical result, this result lies within the
confidence interval computed by FTRES. We further see
that the 3-phase model with 4 cabinets could not be com-
puted by DFTCalc within the time-out (times shown in
Figure 11), while FTRES still produces usable results. Fi-
nally, while the standard Monte Carlo simulation produces
reasonable results for the smaller models, on the larger
models it computes much wider confidence intervals. For
the largest models, the MC simulator observed no failures
at all, and thus computed an unavailability of 0.

Figure 14 shows the generated state spaces for both
tools. Since FTRES only needs an explicit representation of
the shortest paths to failure, it can operate in substantially
less memory than DFTCalc. Although the final model
computed by DFTCalc is usually smaller due to its bisim-
ulation minimisation, the intermediate models are often
much larger.

5.2. Fault-Tolerant Parallel Processor
The second case study is taken from the DFT literature

[1], and describes a fault-tolerant parallel computer system
illustrated in Figure 12. This system consists of four groups
of processors, labelled A, B, C, and S. The processors within
a group are connected by a network element, independent
for each group. A failure of this network element disables
all connected processors.

The processors are also grouped into workstations, num-
bered 1 to n. Each workstation depends on one processor
per group, where the processor of group S can act as a spare
for any of the groups. Therefore, if more than one processor
(or its connecting network element) in a workstation fails,
the workstation fails.

Maintenance is performed through a periodic replace-
ment restoring all degraded components to their perfect
conditions. The time of this replacement follows a four-
phase Erlang distribution with a mean time of 2 time units
between repairs.

The numerical results and computation times for this
case study can be found in Table 1 and Figure 11 respec-
tively. We can see that the unavailability does not vary
much with the number of computer groups, since the net-
work elements are the dominant failure causes and are not
affected by N . We again observe that DFTCalc runs out of
time in the three largest cases while FTRES still performs
well. The standard MC simulation observed no failures for
most of the models.

Figure 14 lists the generated state spaces for both tools.
Again, FTRES requires less peak memory than DFTCalc.

5.3. Hypothetical Example Computer System
Our final example is the classic benchmark DFT of

the Hypothetical Example Computer System (HECS), de-
scribed in [43] as an example of how to model a system in
a DFT. It consists of:

• a processing unit with three processors, of which
one is a spare, of which only one is required to be
functional,

• five memory units of which three must be functional,

• two busses of which one must be functional, and

• hardware and software components of an operator
interface.

The DFT of the HECS is shown in Figure 13.

Computer system failure

Workstation 1 failure Workstation n failure

NA NB
...

S1

B1 C1A1

Sn

Bn CnAn

...

Figure 12: DFT of the fault-tolerant parallel processor. Connections
between the FDEP for B omitted for clarity, as well as the FDEPs
for groups C and S.

13

102
103
104
105
106
107
108

N
r.

of
st

at
es

st
or

ed

2
1

3
1

4
1

2
2

3
2

4
2

2
3

3
3

4
3

1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
1

2
1

2
2

3
1

3
2

3
3

4
1

4
2

4
3

4
4

N=
P=

=N
=k

Railway cabinets FTPP HECS

DFTCalc peak FTRESDFTCalc final

Figure 14: Numbers of states stored in memory for the different cases
with N cabinets/processor groups. For DFTCalc, both the largest
intermediate (peak) and the minimised (final) state spaces are given.

We parameterize this example by replicating the HECS
N times, and requiring k of these replicas to be functional
to avoid the top-level event. The basic events in this case re-
main exponentially distributed, and we add maintenance as
a periodic replacement of all failed components on average
every 8 time units (on a 2-phase Erlang distribution).

As for the other cases, Table 1 lists the unavailabilities
computed by the tools, while Figures 11 and 14 show the
processing time and state spaces computed, respectively.
We notice that for the 4-replication models, DFTCalc is
unable to compute the state space in the available time,
and the MC simulator in many cases failed to observe
any failures, and sometimes produces very wide confidence
intervals in the cases where it did. FTRES, on the other
hand, produced reasonable confidence intervals for all cases.

5.4. Analysis results
As the sections above show, FTRES outperforms DFT-

Calc for larger models, and traditional MC simulation for
models with rare failures. In particular, FTRES:

• requires less peak memory than DFTCalc in every
case, and requires less time for large models, while
still achieving high accuracy.

• can analyse models larger than DFTCalc can handle.

• gives confidence intervals up to an order of magni-
tude tighter than those estimated by MC in similar
processing time.

6. Conclusion

Traditional analysis techniques for (repairable) dynamic
fault trees suffer from a state-space explosion problem
hampering their applicability to large systems. A common
solution to this problem, Monte Carlo simulation, suffers
from the rare event problem making it impractical for
highly-reliable systems. This paper has introduced a novel
analysis technique for repairable DFTs based on importance
sampling. We have shown that this technique can be used
to obtain tight confidence intervals on the availability of
highly reliable systems with large numbers of repairable
components.

Our method uses the compositional semantics of [6] and
[32], providing flexibility and extensibility in the semantics
of the models. By deploying the Path-ZVA algorithm
[5], we only need to explore a small fraction of the entire
state space, substantially reducing the state-space explosion

Computer system failure

MemoryProcessor Bus Interface

P1 P2Ps

M3 M4M2M1 M5

3/5

B1 B2 HW SW

Figure 13: DFT of the hypothetical example computer system.

14

problem. At the same time, the algorithm uses importance
sampling to significantly reduce the number of simulations
required for accurate estimation.

We have demonstrated using three case studies that our
approach can handle considerably larger models than the
stochastic model checking approach used by DFTCalc, and
provide more accurate results than classical Monte Carlo
simulations.

Future work. Relevant extensions of our approach could
generalise the algorithm to compute metrics other than
availability. Of particular interest would be the reliabil-
ity. Furthermore, we currently restrict ourselves to purely
Markovian models (i.e., exponential probability distribu-
tions for transition times and no non-spurious nondetermin-
ism), which means we can only approximate the semantics
described in [3]. Another promising avenue to investigate is
how to include non-Markovian transition times. This would
allow fault maintenance trees to be analysed in their full
expressive power. Finally, the DFT semantics of Boudali
et al. [6] produces nondeterministic transitions for many
DFTs. Our current conversion to a Markovian model can
only be applied if this nondeterminism is spurious, and
it could be interesting to examine whether non-spurious
nondeterminism could be meaningfully incorporated in our
approach.

Acknowledgments. This research was partially funded by
STW and ProRail under project ArRangeer (grant 12238)
with participation by Movares, STW project SEQUOIA
(15474), NWO project BEAT (612001303), NWO project
SamSam (50918239), and the EU project grant SUCCESS
(102112).

[1] J. B. Dugan, S. J. Bavuso, M. A. Boyd, Fault trees and sequence
dependencies, in: Proc. Annu. Reliability and Maintainabil-
ity Symp., IEEE, 1990, pp. 286–293. doi:10.1109/ARMS.1990.
67971.

[2] D. Guck, J. Spel, M. I. A. Stoelinga, DFTCalc: Reliability cen-
tered maintenance via fault tree analysis (tool paper), in: Proc.
17th Int. Conf. Formal Engineering Methods (ICFEM), Vol. 9407
of LNCS, 2015, pp. 304–311. doi:10.1007/978-3-319-25423-4_
19.

[3] E. Ruijters, D. Guck, P. Drolenga, M. I. A. Stoelinga, Fault
maintenance trees: reliability centered maintenance via sta-
tistical model checking, in: Proc. IEEE 62nd Annu. Relia-
bility and Maintainability Symposium (RAMS), 2016. doi:
10.1109/RAMS.2016.7447986.

[4] H. Kahn, T. Harris, Estimation of particle transmission by
random sampling, in: Monte Carlo method; Proc. Symp. held
June 29, 30, and July 1, 1949, Vol. 12 of Nat. Bur. Standards
Appl. Math. Series, 1951, pp. 27–30.

[5] D. Reijsbergen, P. T. de Boer, W. Scheinhardt, S. Juneja, Path-
ZVA: general, efficient and automated importance sampling
for highly reliable Markovian systems, ACM Transactions on
Modeling and Computer Simulation (TOMACS) 28 (3). doi:
10.1145/3161569.

[6] H. Boudali, P. Crouzen, M. I. A. Stoelinga, A rigorous, composi-
tional, and extensible framework for dynamic fault tree analysis,
IEEE Trans. Dependable Secure Comput. 7 (2) (2010) 128–143.
doi:10.1109/TDSC.2009.45.

[7] F. Arnold, A. Belinfante, D. G. Freark van der Berg, M. I. A.
Stoelinga, DFTCalc: A tool for efficient fault tree analysis,
in: Proc. 32nd Int. Conf. Computer Safety, Reliability and

Security (SAFECOMP), Vol. 8153 of LNCS, 2013, pp. 293–301.
doi:10.1007/978-3-642-40793-2_27.

[8] E. Ruijters, M. I. A. Stoelinga, Fault tree analysis: A survey of
the state-of-the-art in modeling, analysis and tools, Computer
Science Review 15–16 (2015) 29–62. doi:10.1016/j.cosrev.
2015.03.001.

[9] W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F. Haasl, Fault
Tree Handbook, Office of Nuclear Regulatory Reasearch, U.S.
Nuclear Regulatory Commision, 1981.

[10] A. Bobbio, D. Codetta-Raiteri, Parametric fault trees with dy-
namic gates and repair boxes, in: Proc. 2004 Annu. IEEE Relia-
bility and Maintainability Symp. (RAMS), 2004, pp. 459–465.
doi:10.1109/RAMS.2004.1285491.

[11] D. Codetta-Raiteri, G. Franceschinis, M. Iacono, V. Vittorini,
Repairable fault tree for the automatic evaluation of repair
policies, in: Proc. Annu. IEEE/IFIP Int. Conf. Dependable
Systems and Networks (DSN), 2004, pp. 659–668. doi:10.1109/
DSN.2004.1311936.

[12] W. E. Vesely, R. E. Narum, PREP and KITT: computer codes
for the automatic evaluation of a fault tree, Tech. rep., Idaho
Nuclear Corp. (1970).

[13] H. Kumamoto, K. Tanaka, K. Inoue, E. J. Henley, Dagger-
sampling Monte Carlo for system unavailability evaluation, IEEE
Trans. Rel. R-29 (2) (1980) 122–125. doi:10.1109/TR.1980.
5220749.

[14] M. Ramakrishnan, Unavailability estimation of shutdown system
of a fast reactor by Monte Carlo simulation, Ann. Nuclear Energy
90 (2016) 264–274. doi:10.1016/j.anucene.2015.11.031.

[15] P. Heidelberger, Fast simulation of rare events in queueing and
reliability models, ACM Trans. Modeling and Computer Sim-
ulation (TOMACS) 5 (1) (1995) 43–85. doi:10.1145/203091.
203094.

[16] R. Gulati, J. B. Dugan, A modular approach for analyzing
static and dynamic fault trees, in: Proc. Annu. IEEE Reliability
and Maintainability Symp. (RAMS), 1997, pp. 57–63. doi:
10.1109/RAMS.1997.571665.

[17] K. D. Rao, V. Gopika, V. V. S. Sanyasi Rao, H. S. Kushwaha,
A. K. Verma, A. Srividya, Dynamic fault tree analysis using
Monte Carlo simulation in probabilistic safety assessment, Re-
liability Engineering and System Safety 94 (4) (2009) 872–883.
doi:10.1016/j.ress.2008.09.007.

[18] B. Kaiser, C. Gramlich, M. Förster, State/event fault trees – a
safety analysis model for software-controlled systems, Reliablity
Engineering and System Safety 92 (11) (2007) 1521–1537. doi:
10.1016/j.ress.2006.10.010.

[19] H. Boudali, P. Crouzen, M. I. A. Stoelinga, A compositional
semantics for dynamic fault trees in terms of interactive Markov
chains, in: Proc. 5th Int. Symp. on Automated Technology for
Verification and Analysis (ATVA), Vol. 4762, 2007, pp. 441–456.
doi:10.1007/978-3-540-75596-8_31.

[20] H. Hermanns, Interactive Markov Chains, Vol. 2428 of LNCS,
Springer, 2002. doi:10.1007/3-540-45804-2.

[21] M. R. Pulungan, Reduction of acyclic phase-type representations,
Ph.D. thesis, Universität des Saarlandes, Saarbrücken (2009).

[22] A. M. Law, Simulation modeling and analysis, 4th Edition,
McGraw-Hill New York, 2007.

[23] E. Ruijters, D. Reijsbergen, P. T. de Boer, M. Stoelinga, Rare
event simulation for dynamic fault trees, in: Proc. Int. Conf.
Computer Safety, Reliability, and Security (SAFECOMP), Vol.
10488 of LNCS, Springer, 2017, pp. 20–35. doi:10.1007/
978-3-319-66266-4_2.

[24] ISO 26262:2011: Road vehicles – functional safety (2011).
[25] S. Junges, D. Guck, J.-P. Katoen, M. I. A. Stoelinga, Uncovering

dynamic fault trees, in: Proc. 46th Annu. IEEE/IFIP Int. Conf.
Dependable Systems and Networks (DSN), 1990, pp. 299–310.
doi:10.1109/DSN.2016.35.

[26] E. Ruijters, D. Guck, P. Drolenga, M. Peters, M. Stoelinga, Main-
tenance analysis and optimization via statistical model checking:
Evaluation of a train’s pneumatic compressor., in: Proc. 13th
Int. Conf. Quantitative Evaluation of SysTems (QEST), Vol.
9826 of Lecture Notes in Computer Science, 2016, pp. 331–347.

15

https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1145/3161569
https://doi.org/10.1145/3161569
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/RAMS.2004.1285491
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/DSN.2004.1311936
https://doi.org/10.1109/TR.1980.5220749
https://doi.org/10.1109/TR.1980.5220749
https://doi.org/10.1016/j.anucene.2015.11.031
https://doi.org/10.1145/203091.203094
https://doi.org/10.1145/203091.203094
https://doi.org/10.1109/RAMS.1997.571665
https://doi.org/10.1109/RAMS.1997.571665
https://doi.org/10.1016/j.ress.2008.09.007
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1016/j.ress.2006.10.010
https://doi.org/10.1007/978-3-540-75596-8_31
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/978-3-319-66266-4_2
https://doi.org/10.1007/978-3-319-66266-4_2
https://doi.org/10.1109/DSN.2016.35

doi:10.1007/978-3-319-43425-4_22.
[27] G. Fishman, Monte Carlo: Concepts, Algorithms, and Appli-

cations, Springer Series in Operations Research and Financial
Engineering, Springer, 1996. doi:10.1007/978-1-4757-2553-7.

[28] EEIG ERTMS Users Group, ERTMS/ETCS RAMS require-
ments specification, chapter 2 - RAM, Tech. Rep. 02S1266-, UIC
(1998).

[29] P. L’Ecuyer, F. Le Gland, P. Lezaud, B. Tuffin, Rare Event
Simulation using Monte Carlo Methods, John Wiley & Sons,
2009, Ch. 3 – Splitting techniques, pp. 39–61. doi:10.1002/
9780470745403.ch3.

[30] J. C. Clopper, E. S. Pearson, The use of confidence or fiducial
limits illustrated in the case of the binomial, Biometrika 26 (4)
(1934) 404–413. doi:10.1093/biomet/26.4.404.

[31] P. L’Ecuyer, B. Tuffin, Approximating zero-variance impor-
tance sampling in a reliability setting, Ann. Operations Research
189 (1) (2011) 277–297. doi:10.1007/s10479-009-0532-5.

[32] D. Guck, J.-P. Katoen, M. I. A. Stoelinga, T. Luiten, J. Romijn,
Smart railroad maintenance engineering with stochastic model
checking, in: Proc. 2nd Int. Conf. Railway Technology: Research,
Development and Maintenance (Railways), Vol. 104 of Civil-
Comp Proceedings, Civil-Comp Press, 2014, article no. 299.
doi:10.4203/ccp.104.299.

[33] C. Eisentraut, H. Hermanns, L. Zhang, On probabilistic au-
tomata in continuous time, in: Proc. 25th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), 2010, pp. 342–351.
doi:10.1109/LICS.2010.41.

[34] R. Tarjan, Depth-first search and linear graph algorithms, SIAM
Journal on Computing 1 (2) (1972) 146–160. doi:10.1137/
0201010.

[35] D. Reijsbergen, Efficient simulation techniques for stochastic
model checking, Ph.D. thesis, University of Twente, Enschede
(December 2013). doi:10.3990/1.9789036535861.

[36] P. L’Ecuyer, J. Blanchet, B. Tuffin, P. Glynn, Asymptotic ro-
bustness of estimators in rare-event simulation, ACM Trans.
Modeling and Computer Simulation (TOMACS) 20 (1) (2010)
nr. 6. doi:10.1145/1667072.1667078.

[37] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: a
toolbox for the construction and analysis of distributed processes,
Int. J. Software Tools for Technology Transfer 15 (2) (2013)
89–107. doi:10.1007/s10009-012-0244-z.

[38] D. Guck, T. Han, J.-P. Katoen, M. R. Hauhäußer, Quantitative
timed analysis of interactive Markov chains, in: Nasa Formal
Methods (NFM), Vol. 7226 of LNCS, 2012, pp. 8–23. doi:
10.1007/978-3-642-28891-3_4.

[39] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, D. N.
Jansen, The ins and outs of the probabilistic model checker
MRMC, Performance Evaluation 68 (2) (2011) 90–104. doi:
10.1016/j.peva.2010.04.001.

[40] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang,
C. McKinty, V. Powazny, W. Serwe, G. Smeding, Reference
manual of the lnt to lotos translator (version 6.7), Tech. rep.,
INRIA/VASY - INRIA/CONVECS (2018).
URL http://cadp.inria.fr/publications/
Champelovier-Clerc-Garavel-et-al-10.html

[41] F. Lang, Exp.open 2.0: A flexible tool integrating partial order,
compositional, and on-the-fly verification methods, in: Proc. 5th
Int. Conf. Integrated Formal Methods (IFM), Vol. 3771 of LNCS,
2005, pp. 70–88. doi:10.1007/11589976_6.

[42] H. Garavel, F. Lang, SVL: a scripting language for compositional
verification, in: Proc. 21st Int. Conf. Formal Techniques for
Networked and Distributed Systems (FORTE), Vol. 69 of IFIP
International Federation for Information Processing, 2001, pp.
377–394. doi:10.1007/0-306-47003-9_24.

[43] M. Stamatelatos, W. Vesely, J. B. Dugan, J. Fragola, J. Minarick,
J. Railsback, Fault Tree Handbook with Aerospace Applications,
Office of safety and mission assurance NASA headquarters, 2002.

16

https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-1-4757-2553-7
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1002/9780470745403.ch3
https://doi.org/10.1093/biomet/26.4.404
https://doi.org/10.1007/s10479-009-0532-5
https://doi.org/10.4203/ccp.104.299
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.3990/1.9789036535861
https://doi.org/10.1145/1667072.1667078
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1007/978-3-642-28891-3_4
https://doi.org/10.1016/j.peva.2010.04.001
https://doi.org/10.1016/j.peva.2010.04.001
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://doi.org/10.1007/11589976_6
https://doi.org/10.1007/0-306-47003-9_24

	Introduction
	Fault Tree Analysis
	Dynamic Fault Trees
	Repairable Fault Trees

	Rare Event Simulation
	Our approach: FTRES
	Compositional Fault Tree Semantics
	Reducing I/O-IMCs to Markov Chains
	The Path-ZVA Algorithm
	Tooling

	Case Studies
	Railway Cabinets
	Fault-Tolerant Parallel Processor
	Hypothetical Example Computer System
	Analysis results

	Conclusion

