
©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

The published version of this paper can be found at https://doi.org/10.1109/RAM.2017.7889759.

https://doi.org/10.1109/RAM.2017.7889759

Uniform Analysis of Fault Trees Through Model Transformations

Enno Ruijters, University of Twente

Stefano Schivo, University of Twente

Mariëlle Stoelinga, University of Twente

Arend Rensink, University of Twente

Key Words: attack-fault trees, fault tree analysis, meta-modelling

SUMMARY & CONCLUSIONS

As the critical systems we rely on every day, such as
nuclear power plants and airplanes, become ever more
complex, the need to rigorously verify the safety and
dependability of these systems is becoming very clear.
Furthermore, deliberate attacks have become a prominent cause
of concern for safety and reliability.

One of the most prominent techniques for analyzing such
systems is fault tree analysis (FTA), and a whole forest of
variants, extensions, and analysis tools have been developed. In
the security field, FTA was the inspiration for attack trees, used
to analyze systems for vulnerability to malicious attacks. These
formalisms are rarely compatible, making it difficult to exploit
their different strengths in analyzing the same system.

The key contribution of this paper is a meta-model
describing many varieties of fault and attack trees, and well as
combined attack-fault trees. We provide translations to and
from different formalisms, as well as our own analysis engine
for combined models. We demonstrate this framework on three
case studies.

1 INTRODUCTION

Modern society increasingly depends on complex systems
such as power plants and sophisticated medical equipment. As
our dependence on such systems grows, it is essential that their
dependability grows with it. Furthermore, aside from traditional
dependability concerns about accidental failures, critical
systems are increasingly threatened by malicious actors
attempting to disrupt them.

Aside from qualitative techniques like FMEA analysis [1],
one of the most prominent techniques for safety analysis in
industry is fault tree analysis (FTA) [2]. Fault trees (FTs)
describe the various failures that can occur in a system and how
these failures combine to cause system failures. Given
information about the probabilities of failures, quantitative
analysis can be performed to obtain dependability metrics such
as reliability.

While the basics of FTA are well-understood, a large
variety of tools and extensions have been developed providing
different analyses and new ways of modeling. Unfortunately,

most of these tools are hard to combine and support only one
formalism. The need for a framework combining them is
therefore clear.

In the field of security analysis, the formalism of attack
trees (AT) has been developed. This formalism is similar to
FTA in that it describes the various attacks that could be
performed and which combinations of attacks lead to a
successful system attack. Also similar to FTA, a wide variety
of tools and extensions exist with very little interoperability.

This paper describes a meta-model for attack trees and fault
trees, uniting several tools and extensions, suitable for easy
extension to include new formalisms. The meta-model supports
combinations of different extensions in one tree, and even
allows attacks and faults to be included in the same model.
Through model transformations, our framework allows models
to be converted from one formalism to another. We also provide
a conversion to our own analysis engine using the UPPAAL [3]
tool to perform analyses of trees with feature combinations not
supported by existing tools. We demonstrate this framework on
three case studies, namely one fault tree, one attack tree, and
one combined attack-fault tree.

Loss of cooling

1

Loss of cooling
leg 1

Loss of cooling
leg 2

Pump 1 Valve 1 2

Loss of power
board A

ELECA

4
Loss of power

board B

ELECB

5

Pump 2Valve 23

Loss of power
board A

ELECA

76

Loss of cooling
to heat exchanger

Figure 1: Part of the fault tree of case study 1. Omitted parts of the
tree have been replaced by triangles.

2 PRELIMINARIES

2.1 Fault trees

Fault trees are an industry-standard tool for conducting
safety and reliability analysis of critical systems. Fault trees
(FTs) describe the propagation of failures from individual
components to system-wide failures.

The components of a system are described by leaves in a
fault tree, and are decorated with probability distributions
describing their failure behavior over time. These failures
combine in gates, which describe what combinations of
subsystem failures cause an intermediate event.

An example of an FT is shown in Figure 1, taken from an
example of the commercial tool Isograph FaultTree+ [4]. At the
top of the tree is the top level event (TLE), in this case loss of
cooling. Immediately below that is an OR-gate, indicating that
if either component 1 fails, or the intermediate event “loss of
cooling to heat exchanger” occurs, the TLE occurs. Below the
loss of cooling to heat exchanger is an AND-gate, indicating
that both subsystems need to fail for this event to occur. As a
final note, the subtrees ELECA and ELECB cause failures of
multiple subtrees.

2.2 Attack trees

Fault Trees have spawned many different variants, and
have been used as an inspiration for other research fields as
well. One modeling formalism based on FTs is Attack Trees
(ATs), which is applied in the field of security. While
maintaining the same general structure as FTs, ATs describe
how a system can be attacked. In particular, the leaves (called
attack steps) represent an attacker's possible actions,
intermediate nodes (gates) define different possible attack
paths, and the root of the tree is the target of the attack. In Figure
2 we show a simple AT (taken from ADTool [5]) where an
attacker tries to gain access to somebody’s bank account. AND
and OR gates are used in the example, where AND gates are
marked with an arc running along the edges connecting the gate
with its children. So we see in Figure 2 that in order to activate
the “ATM” node, an attacker needs to activate both “PIN” and
“Card”. “PIN” in turn requires the activation of at least one out
of the three attack steps “Eavesdrop”, “Find note”, and “Force”.

The numbers in the leaves were arbitrarily chosen to

represent minimum time durations (in hours) for the
corresponding attack steps.

2.3 Timed automata

In this paper we present a tool for converting between
different formalisms of fault and attack trees. In addition to
translating to and from existing tools, our tool provides its own
analysis engine based on priced timed automata (PTA) [6],
which extend timed automata (TA) with costs on locations and
transitions, and stochastic timed automata, which extend TA
with probability distributions on transitions.

A TA is a model consisting of locations and transitions
between these locations, with constraints describing when
certain transitions may or must be taken. Clocks keep track of
the passage of time, and are used in constraints specify when a
transition may be taken or to limit how long a location may be
occupied.

At any time, one of the locations is the current location.
Depending on the constraints, a transition may be made to move
to a new current location, or the TA can remain in the same
location but increase the value of the clocks. When a transition
is made, a specified subset of clocks is reset to start counting
time over from 0.

In standard TAs, transitions are either guaranteed or
prohibited to be taken at any given time, or there is a
nondeterministic choice to take a transition. Stochastic timed
automata (STA) [11] have the additional option of attaching a
probability distribution to the time when a transition is taken.
This enables one to compute properties such as the probability
of reaching a certain state before a given time.

PTAs extend TAs by allowing costs to be specified for
being in a location (per time unit), and for taking a transition.
This allows analysis engines such as UPPAAL CORA [6] to
compute cost-optimal policies to reach certain objectives.

These formalisms allow multiple TAs to be combined into
one network, using signals to communicate. An automaton can
emit an output signal (denoted by an exclamation mark, e.g.
‘a!’) when taking some transition. Automata that have the

Bank Account

ATM

PIN

Eavesdrop
10.0

Find Note
20.0

Force
30.0

Card
70.0

Online

Password

Phishing
100.0

Key Logger
60.0

User Name
20.0

Malware

Browser
50.0

OS
80.0

Figure 2: An example of attack tree. An attacker attempts to obtain
access to somebody's bank account.

C

C

Init
Activating

ComparingWaiting

Completed
activate[id]?

activated < N
activate[children[activated]]!

activated++

activated == 2

complete[children[1]]?
completionCount++

complete[children[0]]?
completionCount++

completionCount < k

completionCount ≥ k
complete[id]!

complete[children[0]]?
completionCount++

complete[children[1]]?
completionCount++

Colors:
guard
synchronization
update

Figure 3: Timed automaton for a gate with N=2 children, failing when
k children fail. The automaton begins in the Init state waiting for an
activation signal. Upon receiving this signal, it activates all its
children and waits for their completions. Whenever a child sends a
completion signal, the TA examines whether enough children have
completed (e.g. 1 for an OR-gate, or N for an AND-gate), and if so,
sends its own completion signal. ‘C’s mark committed locations.

option to take a transition marked with an input signal (denoted
by a question mark, e.g. ‘a?’) do so at exactly the same time that
the corresponding output signal is emitted.

An example of a TA is shown in Figure 3, modelling the
behavior of a fault tree gate. This TA communicates with its
children and parents using the ‘activate’ and ‘complete’ signals.

2.4 Model-driven engineering

Many fields such as mathematics, physics, and biology use
models to describe behavior and abstract away irrelevant
details. In computer science, models have long been used as
documentation, but model-driven engineering is an approach
that uses models as a basic abstraction in software design as
well.

In model-driven engineering, models are uniformly
represented as instances of meta-models. These meta-models
are in essence models of models, defining the structure and
behavior that instances of the meta-model must adhere to [7].
Meta-models are similar to types in other programming
languages (i.e. integers, strings, etc.) and allow systematic
definitions of the creation, use, and transformation of models.

Due to the compact representation of model operations
such as transformations, model-driven engineering allows
complex operations to be concisely expressed. Furthermore, by
describing the ‘essence’ of a model, instances of such models
in different formats such as XML, JSON, and binary formats
can be used together for easy interoperability.

3 METHODOLOGY

3.1 Attack-fault tree meta-model

The meta-model we built includes different versions of FT
and AT, allowing easy translation of models between different
formats to exploit the strong points of different analysis tools.

Thanks to its encompassing nature, the meta-model can also
represent so-called attack-fault trees (AFT), where both
accidental and deliberate types of failures and attacks are
represented. This allows one model to take into account the
complex interactions occurring between maintenance needs and
security requirements. In practice, an AFT could model the
(possibly negative) impact on system reliability or safety of a
new security measure, or help highlight the security risks
inherent an unwary maintenance protocol.

As previously described, using a meta-model allows us to
encompass different modeling formalisms and enables
translation between them. For example, an AT model could be
generated with ADTool and then analyzed with Attack Tree
Evaluator [8]. We also provide a translation into a timed
automata model we designed to fit different kinds of FTs and
ATs. This timed automata model is then analyzed with
UPPAAL [3] or its extensions for various properties such as
reliability (for FT) and fastest attack vector (for AT). For
examples of the analysis workflows enabled by our method, see
the Section 4.

The meta-model we schematically present in Figure 4 is
divided into two main parts, which represent the tree structure
and the attributes associated with the leaves respectively. In this
way, we exploit compositionality to analyze the same model
with different parameter sets; this allows us to e.g. evaluate the
effects of different maintenance strategies (for FT) or attacker
profiles (for AT). Thanks to the extensibility of meta-models,
additional features and model types can be introduced in a
straightforward way.

The structure of the meta-model is made to be a generic
representation of different types of FT and AT. We describe a
tree as a collection of nodes connected by parent-child relations;
a single (root) node has no parent. Nodes can be labelled either
as “contributing” or “counteracting”; in FT terms, they would
represent faults or repairs, respectively. In an AT, where the

Attribute

Node

id : EString

label : EString

nature : Nature = Attack

role : RoleType = Contributing

CostPurpose

costType : CostType = ON_ACTIVATION

CostType

ON_ACTIVATION

ON_COMPLETION

ON_ABORT

WHILE_ACTIVE

WHILE_COMPLETED

Domain

name : EString

JavaObjectValue

value : EJavaObject

JavaType

valueClass : EJavaClass

Purpose

RealTypeRealValue

value : EDouble = 0.0

TimePurpose

timeType : TimeType = MINIMUM

TimeType

MINIMUM

MAXIMUM

EXPONENTIAL

TypeValue

Connector

AND FDEP KofN

Threshold : EInt

OR

AttackTree

Nature

Attack

Fault

Hybrid

RoleType

Contributing

Counteracting

[1..1] node

[0..*] parents

[0..*] children
[1..1] value

[0..1] purpose
[0..*] attributes

[1..1] valueType

[0..1] connector

[1..1] Root [1..*] Nodes

Structure Attributes

.

.
Figure 4: The unified AFT meta-model. The "..." indicate parts that can be further extended.

point of view is often that of an attacker, a contributing node
represents an attack and a counteracting node is a defensive
countermeasure. A node can represent a gate (sometimes also
called connector) and its type defines how the completion of the
node’s children determines the completion of the node itself.
The meta-model already includes a number of well-known
gates, both from the FT and AT worlds, such as AND, OR,
sequential AND (SAND), functional dependency (FDEP),
voting (k-of-N), etc.

The nature of a leaf determines whether that leaf represents
a component failure or an attack step. The nature of a gate is
automatically inferred from the nature of its children, with gates
connecting nodes of different nature being assigned a “mixed”
nature. A tree whose root has a mixed nature is an AFT.

Attributes can be assigned to the tree leaves to describe the
characteristics of the corresponding basic events/attack steps.
Each attribute is assigned to a domain, which describes both the
data type used to represent its values and the purpose intended
for that domain. For example, a domain with real-typed values
may be used with the purpose of representing the rate of failure
of a component. The same real-typed values can be used in
another domain with the purpose of representing the minimum
time an attack step takes to be performed. Different leaves can
have attributes from different domains, although some
restrictions are implied by the semantics (e.g. a leaf with two
domains specifying different failure times may cause problems
during analysis).

The domains featured in a tree determine which analysis
types are available. Because different modeling formalisms use
different attributes, the translation of an instance of the meta-
model into a modeling formalism will need to include a subset
of all the domains it refers, excluding the rest. For example, the
Galileo format has no notion of minimum time to occurrence,
so in order to analyze a model with DFTCalc such values must
be converted to mean times.

3.2 Model transformations

Our tool provides bidirectional transformations between
the unified meta-model and several formalisms, including an
extended Galileo format also used by DFTCalc [9], the format
of the ADTool program for attack trees, and several others. We
also provide a transformation from the unified meta-model to
the UPPAAL tool, including the SMC and CORA extensions.
The produced UPPAAL models can be used for quantitative
analysis to compute key performance indicators such as
reliability, availability, minimal-time sequence of attacks to
reach the TLE, and expected cost. The overall structure of the
transformations is shown in Figure 5.

Since the various formalisms support different feature sets,
the transformations leave out information that cannot be
represented in a given output. For example, the ADTool
program does not support spare gates that can be present in
Galileo models. The transformation thus converts such spare
gates to AND-gates and emits a warning. Whenever possible,
the transformations ensure that the resulting model is at most as

reliable as the original, to avoid creating an illusion of safety.

3.3 Analysis tools

In addition to converting between formalisms of existing
tools, we provide our own analysis using the UPPAAL tool. We
use a translation to timed automata similar to that used in [10].

We translate each element of the AFT (i.e. leaf or gate) into
a priced (stochastic) timed automaton, which communicates
using signals to combine into a model of the entire tree.

For example, Figure 3 shows the timed automaton for one
gate with two children, and Figure 6 shows the stochastic timed
automaton for a basic event. During the translation, the IDs of
the gate and children are assigned such that each element has a
unique number.

After constructing the network of automata for the entire
tree, UPPAAL has various extensions that allow different
analyses to be performed. For example, the UPPAAL-CORA
[6] tool can compute cost-optimal traces to reach a certain state,
corresponding to the minimal-cost attack that successfully
causes the TLE to occur. The UPPAAL-SMC [11] extension
uses statistical model checking to allow statistical properties to
be computed, such as the probability that the top event occurs
before a certain time (a.k.a. the system unreliability).

4 CASE STUDIES

To demonstrate our approach, we have conducted three
case studies. The first considers a fault tree and shows that we
can reproduce a tree from Isograph FaultTree+ and analyze it
correctly. Next, we take an attack tree from ADTool and
analyze it to obtain information that the original tool could not
compute. Finally, we combine fault trees and attack trees and

Structure

Attributes

Unified metamodel

Attack Tree Evaluator

ADTool

Galileo

etc...

Uppaal model
(SMC / Cora)

QueryOptions

Result

Figure 5: Overview of the transformations our framework supports.

C

Init Active Completing Completed

activate[id]? 0.5 complete[id]!

Figure 6: Stochastic timed automaton for a basic event with an
exponentially distributed failure time with a failure rate of 0.5.

show that we can obtain useful information from such a
combined model.

4.1 Fault tree: Cooling

This case study considers one of the examples provided
with the Isograph FaultTree+ tool demo: the cooling system.
This example models a cooling system with redundant pumps
and power supplies. A portion of the FT can be seen in Figure
1. The original FT contained repair rates, which are not
currently supported by our tool and have therefore been
removed. Other than that, the model was reproduced without
modifications.

The model was transformed to two new formalisms for
analysis: a Galileo model which was analyzed using DFTCalc
[9], and an UPPAAL-SMC model as described in Section 3.3.
The UPPAAL-SMC model was then analyzed to obtain the
unreliabilities between times 0 and 2, performing enough
simulations to achieve a 99% confidence interval with a width
of 1%. Similarly, the Galileo and the original FaultTree+
models were analyzed to compute the unreliability over time.

The results of the UPPAAL analysis are shown in Figure
7. The graphs show that the correct unreliability as computed
by FaultTree+ lies within the confidence interval computed by
UPPAAL. The results computed by DFTCalc were equal to
those computed by FaultTree+ to within four decimal places.
We thus conclude that the fault tree was correctly translated.

4.2 Attack tree: accessing bank account

In this case study we present the analysis of the example
AT described in Figure 2. The model was produced using
ADTool, which already provides basic analysis features such as
the inference of the minimal time for a successful attack. In
order to perform further analyses, we translated the original
model into a timed automata model, which was then analyzed
with UPPAAL. The translation was made possible by the
definitions of the meta-models of:

1. ADTool XML format,
2. Unified AFT as described in Section 3.1,
3. UPPAAL model for timed automata [12],
4. UPPAAL XML format.
The translation workflow proceeds then in order 1 → 2 →

3 → 4. The transformations are specified in the Epsilon
framework [13], and our tool automatically chooses the correct
transformations based on the provided input and requested
outputs. Human-readable results are obtained at the end of the
workflow. In this case study, we gave the model as input to our
tool and requested the fastest way to perform an attack. The
solution we obtained is represented in Figure 8 by highlighting
the nodes that are activated in the solution, together with the
sequence in which they are completed.

4.3 Attack-fault tree: redundant water pumps

We will now examine a hybrid model which contains both
FT basic events and AT attack steps. The model represents a
couple of redundant water pumps controlled by valves, both of
which are normally running. Under normal circumstances, each
pump has a failure rate of 0.01. An attacker has several options
to sabotage the installation: she can damage one of the pumps,
introducing a new failure cause with a rate of 0.1, and/or she
can sabotage one or both valves causing them to fail after
exactly 25 time units. We assign a cost of 10 to the sabotage of
a pump and 100 to sabotage any valve.

Figure 9 shows the results of the analysis for attackers
expending different costs. We observe that, as expected, an
attacker with sufficient budget can cause a system failure after
25 time units by sabotaging both valves. We also see that there

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

U
n
re

lia
b
ili

ty

Time

Lower bound with 99% confidence
Upper bound with 99% confidence

Isograph FaultTree+

Figure 7: Analysis results for the fault tree case study.

Bank Account

ATM

PIN

Eavesdrop Find Note Force

Card

Online

Password

Phishing Key Logger

User Name Malware

Browser OS1

2 3

45

67

8

9

10

11

12

Figure 8: The fastest attack to obtain access to the bank account.
Numbers indicate the sequence of steps that need to be completed in
a successful attack.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 10 20 30 40 50

U
n
re

lia
b
ili

ty

Time

Cost 0
Cost 10
Cost 20

Cost 100
Cost 200

Figure 9: Results of the combined attack-fault tree. The cost=200
line goes to unreliability 1 at time 25. Each pair of curves of the
same color describes a 99% confidence interval around the mean.

is very little difference in the unreliability after 25 time units
when sabotaging both pumps (cost 20) compared to sabotaging
one valve (cost 100), so the pumps will be a much more
attractive target for a medium-budget attacker than the valves.

5 CONCLUSION AND FUTURE WORK

This paper presents a meta-model encompassing many
different fault tree and attack tree formalisms as well as
combinations thereof. Model transformations are used to
convert between this meta-model and the existing formalisms,
and to a novel analysis framework, based on timed automata,
capable of analyzing models combining features of multiple
formalisms. Application to case studies demonstrates the
correctness and usefulness of the meta-model and
transformations.

Future work includes extending the meta-model to cover
more formalisms covering topics like repairs and uncertainty.

6 ACKNOWLEDGEMENTS

This work has been supported by the STW-ProRail
partnership program ExploRail under the project ArRangeer
(12238) and the EU FP7 project TREsPASS (318003).

REFERENCES

1. M. Rausand and A. Hoylan, “System Reliability Theory.
Models, Statistical Methods, and Applications,” Wiley,
2004.

2. W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F.
Haasl, “Fault Tree Handbook,” Office of Nuclear
Regulatory Research, U.S. Nuclear Regulatory
Commision, 1981.

3. K. G. Larsen, P. Pettersson, W. Yi, “UPPAAL in a
nutshell,” Int. J. Software Tools for Technology Transfer,
vol. 1(1), pp. 134-152, Dec. 1997.

4. Isograph, FaultTree+: http://www.isograph.com/
software /reliability-workbench/fault-tree-analysis/

5. B. Kordy, P. Kordy, S. Mauw, P. Schweitzer, “ADTool:
Security Analysis with Attack-Defense Trees,” in: Proc.
10th Int. Conf. Quantitative Evaluation of Systems, LNCS
vol. 8054, 2013, pp. 173-176.

6. G. Berhmann, K. G. Larsen, J. I. Rasmussen, “Optimal
scheduling using priced timed automata,” ACM
SIGMETRICS Performance Evaluation Review, vol. 32(4),
pp. 34-40, Mar 2005.

7. J. Sprinkle, B. Rumpe, H. Vangheluwe, G. Karsai,
“Metamodelling: State of the Art and Research
Challenges,” in Model-Based Engineering of Embedded
Real-Time Systems, LNCS vol. 6100, pp. 57-76, 2010.

8. Z. Aslanyan, “Attack Tree Evaluator”, Developed for EU
project TREsPASS, Technical University of Denmark.

9. F. Arnold, A. Belinfante, F. van der Berg, D. Guck, M.
Stoelinga, “DFTCalc: A tool for efficient fault tree
analysis,” in: Proc. 32nd Int. Conf. Comput. Safety,
Reliability & Security, LNCS vol. 8153, pp. 293-301, 2013.

10. E. Ruijters and M. I. A. Stoelinga, “Fault maintenance
trees: reliability centered maintenance via statistical model
checking,” in: Proc. IEEE 62nd Annu. Reliability and
Maintainability Symp., 2016. doi:
10.1109/RAMS.2016.7447986

11. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B.
Poulsen, “UPPAAL SMC tutorial,” Int. J. Software Tools
for Technology Transfer, vol. 17(4), pp. 397-415, 2015.

12. C. Gerking, S. Dziwok, C. Heinzemann, W. Schäfer.
“Domain-specific Model Checking for Cyber-physical
Systems,” in: Proc. 12th Workshop on Model-Driven Eng.,
Verification and Validation, Ottawa, Sep. 2015.

13. D. Kolovos, L. Rose, A. García-Domínguez, R. Paige,
“The Epsilon Book,” [Online]. Available:
http://www.eclipse.org/epsilon/doc/book/

BIOGRAPHIES

Enno Ruijters
University of Twente, Formal Methods and Tools
Enschede, Overijssel, 7522 NB, The Netherlands

e-mail: e.j.j.ruijters@utwente.nl

Enno Ruijters is a PhD Student at the University of Twente,
currently studying fault tree analysis and stochastic model
checking in a railroad infrastructure context. He holds an MSc.
in Operations Research from Maastricht University.

Stefano Schivo
University of Twente, Formal Methods and Tools
Enschede, Overijssel, 7522 NB, The Netherlands

e-mail: s.schivo@utwente.nl

Stefano Schivo received the Ph.D. degree in 2010 from the
University of Trento, Italy. He is currently a Postdoctoral
Researcher at the University of Twente, the Netherlands, where
he works on distributed systems of various natures.

Mariëlle Stoelinga
University of Twente, Formal Methods and Tools
Enschede, Overijssel, 7522 NB, The Netherlands

e-mail: marielle@cs.utwente.nl

Dr. Mariëlle Stoelinga is an associate professor at the
University of Twente, the Netherlands, leading a team on
quantitative analysis and risk management of computer
systems. She holds an MSc and PhD degree from Radboud
University Nijmegen, the Netherlands.

Arend Rensink
University of Twente, Formal Methods and Tools
Enschede, Overijssel, 7522 NB, The Netherlands

e-mail: arend.rensink@utwente.nl

Prof. dr. Arend Rensink is a professor in software modelling,
transformation and verification at the University of Twente, the
Netherlands. His research interests are model-driven
engineering and graph transformations.

https://dx.doi.org/10.1007/s100090050010
http://www.isograph.com/software /reliability-workbench/fault-tree-analysis/
https://dx.doi.org/10.1007/978-3-642-40196-1_15
http://dx.doi.org/10.1145/1059816.1059823
https://dx.doi.org/10.1007/978-3-642-16277-0_3
https://vimeo.com/145070436
https://dx.doi.org/10.1007/978-3-642-40793-2_27
http://dx.doi.org/10.1109/RAMS.2016.7447986
http://dx.doi.org/10.1109/RAMS.2016.7447986
https://dx.doi.org/10.1007/s10009-014-0361-y
http://ceur-ws.org/Vol-1514/paper3.pdf
http://www.eclipse.org/epsilon/doc/book/

