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SUMMARY & CONCLUSIONS 

As the critical systems we rely on every day, such as 
nuclear power plants and airplanes, become ever more 
complex, the need to rigorously verify the safety and 
dependability of these systems is becoming very clear. 
Furthermore, deliberate attacks have become a prominent cause 
of concern for safety and reliability. 

One of the most prominent techniques for analyzing such 
systems is fault tree analysis (FTA), and a whole forest of 
variants, extensions, and analysis tools have been developed. In 
the security field, FTA was the inspiration for attack trees, used 
to analyze systems for vulnerability to malicious attacks. These 
formalisms are rarely compatible, making it difficult to exploit 
their different strengths in analyzing the same system. 

The key contribution of this paper is a meta-model 
describing many varieties of fault and attack trees, and well as 
combined attack-fault trees. We provide translations to and 
from different formalisms, as well as our own analysis engine 
for combined models. We demonstrate this framework on three 
case studies. 

1 INTRODUCTION 

Modern society increasingly depends on complex systems 
such as power plants and sophisticated medical equipment. As 
our dependence on such systems grows, it is essential that their 
dependability grows with it. Furthermore, aside from traditional 
dependability concerns about accidental failures, critical 
systems are increasingly threatened by malicious actors 
attempting to disrupt them. 

Aside from qualitative techniques like FMEA analysis [1], 
one of the most prominent techniques for safety analysis in 
industry is fault tree analysis (FTA) [2]. Fault trees (FTs) 
describe the various failures that can occur in a system and how 
these failures combine to cause system failures. Given 
information about the probabilities of failures, quantitative 
analysis can be performed to obtain dependability metrics such 
as reliability. 

While the basics of FTA are well-understood, a large 
variety of tools and extensions have been developed providing 
different analyses and new ways of modeling. Unfortunately, 

most of these tools are hard to combine and support only one 
formalism. The need for a framework combining them is 
therefore clear. 

In the field of security analysis, the formalism of attack 
trees (AT) has been developed. This formalism is similar to 
FTA in that it describes the various attacks that could be 
performed and which combinations of attacks lead to a 
successful system attack. Also similar to FTA, a wide variety 
of tools and extensions exist with very little interoperability. 

This paper describes a meta-model for attack trees and fault 
trees, uniting several tools and extensions, suitable for easy 
extension to include new formalisms. The meta-model supports 
combinations of different extensions in one tree, and even 
allows attacks and faults to be included in the same model. 
Through model transformations, our framework allows models 
to be converted from one formalism to another. We also provide 
a conversion to our own analysis engine using the UPPAAL [3] 
tool to perform analyses of trees with feature combinations not 
supported by existing tools. We demonstrate this framework on 
three case studies, namely one fault tree, one attack tree, and 
one combined attack-fault tree. 
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Figure 1: Part of the fault tree of case study 1. Omitted parts of the 
tree have been replaced by triangles. 



2 PRELIMINARIES 

2.1 Fault trees 

Fault trees are an industry-standard tool for conducting 
safety and reliability analysis of critical systems. Fault trees 
(FTs) describe the propagation of failures from individual 
components to system-wide failures. 

The components of a system are described by leaves in a 
fault tree, and are decorated with probability distributions 
describing their failure behavior over time. These failures 
combine in gates, which describe what combinations of 
subsystem failures cause an intermediate event. 

An example of an FT is shown in Figure 1, taken from an 
example of the commercial tool Isograph FaultTree+ [4]. At the 
top of the tree is the top level event (TLE), in this case loss of 
cooling. Immediately below that is an OR-gate, indicating that 
if either component 1 fails, or the intermediate event “loss of 
cooling to heat exchanger” occurs, the TLE occurs. Below the 
loss of cooling to heat exchanger is an AND-gate, indicating 
that both subsystems need to fail for this event to occur. As a 
final note, the subtrees ELECA and ELECB cause failures of 
multiple subtrees. 

2.2 Attack trees 

Fault Trees have spawned many different variants, and 
have been used as an inspiration for other research fields as 
well. One modeling formalism based on FTs is Attack Trees 
(ATs), which is applied in the field of security. While 
maintaining the same general structure as FTs, ATs describe 
how a system can be attacked. In particular, the leaves (called 
attack steps) represent an attacker's possible actions, 
intermediate nodes (gates) define different possible attack 
paths, and the root of the tree is the target of the attack. In Figure 
2 we show a simple AT (taken from ADTool [5]) where an 
attacker tries to gain access to somebody’s bank account. AND 
and OR gates are used in the example, where AND gates are 
marked with an arc running along the edges connecting the gate 
with its children. So we see in Figure 2 that in order to activate 
the “ATM” node, an attacker needs to activate both “PIN” and 
“Card”. “PIN” in turn requires the activation of at least one out 
of the three attack steps “Eavesdrop”, “Find note”, and “Force”. 

The numbers in the leaves were arbitrarily chosen to 

represent minimum time durations (in hours) for the 
corresponding attack steps. 

2.3 Timed automata 

In this paper we present a tool for converting between 
different formalisms of fault and attack trees. In addition to 
translating to and from existing tools, our tool provides its own 
analysis engine based on priced timed automata (PTA) [6], 
which extend timed automata (TA) with costs on locations and 
transitions, and stochastic timed automata, which extend TA 
with probability distributions on transitions. 

A TA is a model consisting of locations and transitions 
between these locations, with constraints describing when 
certain transitions may or must be taken. Clocks keep track of 
the passage of time, and are used in constraints specify when a 
transition may be taken or to limit how long a location may be 
occupied. 

At any time, one of the locations is the current location. 
Depending on the constraints, a transition may be made to move 
to a new current location, or the TA can remain in the same 
location but increase the value of the clocks. When a transition 
is made, a specified subset of clocks is reset to start counting 
time over from 0. 

In standard TAs, transitions are either guaranteed or 
prohibited to be taken at any given time, or there is a 
nondeterministic choice to take a transition. Stochastic timed 
automata (STA) [11] have the additional option of attaching a 
probability distribution to the time when a transition is taken. 
This enables one to compute properties such as the probability 
of reaching a certain state before a given time. 

PTAs extend TAs by allowing costs to be specified for 
being in a location (per time unit), and for taking a transition. 
This allows analysis engines such as UPPAAL CORA [6] to 
compute cost-optimal policies to reach certain objectives. 

These formalisms allow multiple TAs to be combined into 
one network, using signals to communicate. An automaton can 
emit an output signal (denoted by an exclamation mark, e.g. 
‘a!’) when taking some transition. Automata that have the 
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Figure 2: An example of attack tree. An attacker attempts to obtain 
access to somebody's bank account. 
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option to take a transition marked with an input signal (denoted 
by a question mark, e.g. ‘a?’) do so at exactly the same time that 
the corresponding output signal is emitted. 

An example of a TA is shown in Figure 3, modelling the 
behavior of a fault tree gate. This TA communicates with its 
children and parents using the ‘activate’ and ‘complete’ signals. 

2.4 Model-driven engineering 

Many fields such as mathematics, physics, and biology use 
models to describe behavior and abstract away irrelevant 
details. In computer science, models have long been used as 
documentation, but model-driven engineering is an approach 
that uses models as a basic abstraction in software design as 
well. 

In model-driven engineering, models are uniformly 
represented as instances of meta-models. These meta-models 
are in essence models of models, defining the structure and 
behavior that instances of the meta-model must adhere to [7]. 
Meta-models are similar to types in other programming 
languages (i.e. integers, strings, etc.) and allow systematic 
definitions of the creation, use, and transformation of models. 

Due to the compact representation of model operations 
such as transformations, model-driven engineering allows 
complex operations to be concisely expressed. Furthermore, by 
describing the ‘essence’ of a model, instances of such models 
in different formats such as XML, JSON, and binary formats 
can be used together for easy interoperability. 

3 METHODOLOGY 

3.1 Attack-fault tree meta-model 

The meta-model we built includes different versions of FT 
and AT, allowing easy translation of models between different 
formats to exploit the strong points of different analysis tools. 

Thanks to its encompassing nature, the meta-model can also 
represent so-called attack-fault trees (AFT), where both 
accidental and deliberate types of failures and attacks are 
represented. This allows one model to take into account the 
complex interactions occurring between maintenance needs and 
security requirements. In practice, an AFT could model the 
(possibly negative) impact on system reliability or safety of a 
new security measure, or help highlight the security risks 
inherent an unwary maintenance protocol. 

As previously described, using a meta-model allows us to 
encompass different modeling formalisms and enables 
translation between them. For example, an AT model could be 
generated with ADTool and then analyzed with Attack Tree 
Evaluator [8]. We also provide a translation into a timed 
automata model we designed to fit different kinds of FTs and 
ATs. This timed automata model is then analyzed with 
UPPAAL [3] or its extensions for various properties such as 
reliability (for FT) and fastest attack vector (for AT). For 
examples of the analysis workflows enabled by our method, see 
the Section 4. 

The meta-model we schematically present in Figure 4 is 
divided into two main parts, which represent the tree structure 
and the attributes associated with the leaves respectively. In this 
way, we exploit compositionality to analyze the same model 
with different parameter sets; this allows us to e.g. evaluate the 
effects of different maintenance strategies (for FT) or attacker 
profiles (for AT). Thanks to the extensibility of meta-models, 
additional features and model types can be introduced in a 
straightforward way. 

The structure of the meta-model is made to be a generic 
representation of different types of FT and AT. We describe a 
tree as a collection of nodes connected by parent-child relations; 
a single (root) node has no parent. Nodes can be labelled either 
as “contributing” or “counteracting”; in FT terms, they would 
represent faults or repairs, respectively. In an AT, where the 
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point of view is often that of an attacker, a contributing node 
represents an attack and a counteracting node is a defensive 
countermeasure. A node can represent a gate (sometimes also 
called connector) and its type defines how the completion of the 
node’s children determines the completion of the node itself. 
The meta-model already includes a number of well-known 
gates, both from the FT and AT worlds, such as AND, OR, 
sequential AND (SAND), functional dependency (FDEP), 
voting (k-of-N), etc. 

The nature of a leaf determines whether that leaf represents 
a component failure or an attack step. The nature of a gate is 
automatically inferred from the nature of its children, with gates 
connecting nodes of different nature being assigned a “mixed” 
nature. A tree whose root has a mixed nature is an AFT. 

Attributes can be assigned to the tree leaves to describe the 
characteristics of the corresponding basic events/attack steps. 
Each attribute is assigned to a domain, which describes both the 
data type used to represent its values and the purpose intended 
for that domain. For example, a domain with real-typed values 
may be used with the purpose of representing the rate of failure 
of a component. The same real-typed values can be used in 
another domain with the purpose of representing the minimum 
time an attack step takes to be performed. Different leaves can 
have attributes from different domains, although some 
restrictions are implied by the semantics (e.g. a leaf with two 
domains specifying different failure times may cause problems 
during analysis). 

The domains featured in a tree determine which analysis 
types are available. Because different modeling formalisms use 
different attributes, the translation of an instance of the meta-
model into a modeling formalism will need to include a subset 
of all the domains it refers, excluding the rest. For example, the 
Galileo format has no notion of minimum time to occurrence, 
so in order to analyze a model with DFTCalc such values must 
be converted to mean times. 

3.2 Model transformations 

Our tool provides bidirectional transformations between 
the unified meta-model and several formalisms, including an 
extended Galileo format also used by DFTCalc [9], the format 
of the ADTool program for attack trees, and several others. We 
also provide a transformation from the unified meta-model to 
the UPPAAL tool, including the SMC and CORA extensions. 
The produced UPPAAL models can be used for quantitative 
analysis to compute key performance indicators such as 
reliability, availability, minimal-time sequence of attacks to 
reach the TLE, and expected cost. The overall structure of the 
transformations is shown in Figure 5. 

Since the various formalisms support different feature sets, 
the transformations leave out information that cannot be 
represented in a given output. For example, the ADTool 
program does not support spare gates that can be present in 
Galileo models. The transformation thus converts such spare 
gates to AND-gates and emits a warning. Whenever possible, 
the transformations ensure that the resulting model is at most as 

reliable as the original, to avoid creating an illusion of safety. 

3.3 Analysis tools 

In addition to converting between formalisms of existing 
tools, we provide our own analysis using the UPPAAL tool. We 
use a translation to timed automata similar to that used in [10]. 

We translate each element of the AFT (i.e. leaf or gate) into 
a priced (stochastic) timed automaton, which communicates 
using signals to combine into a model of the entire tree. 

For example, Figure 3 shows the timed automaton for one 
gate with two children, and Figure 6 shows the stochastic timed 
automaton for a basic event. During the translation, the IDs of 
the gate and children are assigned such that each element has a 
unique number. 

After constructing the network of automata for the entire 
tree, UPPAAL has various extensions that allow different 
analyses to be performed. For example, the UPPAAL-CORA 
[6] tool can compute cost-optimal traces to reach a certain state,
corresponding to the minimal-cost attack that successfully
causes the TLE to occur. The UPPAAL-SMC [11] extension
uses statistical model checking to allow statistical properties to
be computed, such as the probability that the top event occurs
before a certain time (a.k.a. the system unreliability).

4 CASE STUDIES 

To demonstrate our approach, we have conducted three 
case studies. The first considers a fault tree and shows that we 
can reproduce a tree from Isograph FaultTree+ and analyze it 
correctly. Next, we take an attack tree from ADTool and 
analyze it to obtain information that the original tool could not 
compute. Finally, we combine fault trees and attack trees and 
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show that we can obtain useful information from such a 
combined model. 

4.1 Fault tree: Cooling 

This case study considers one of the examples provided 
with the Isograph FaultTree+ tool demo: the cooling system. 
This example models a cooling system with redundant pumps 
and power supplies. A portion of the FT can be seen in Figure 
1. The original FT contained repair rates, which are not
currently supported by our tool and have therefore been
removed. Other than that, the model was reproduced without
modifications.

The model was transformed to two new formalisms for 
analysis: a Galileo model which was analyzed using DFTCalc 
[9], and an UPPAAL-SMC model as described in Section 3.3. 
The UPPAAL-SMC model was then analyzed to obtain the 
unreliabilities between times 0 and 2, performing enough 
simulations to achieve a 99% confidence interval with a width 
of 1%. Similarly, the Galileo and the original FaultTree+ 
models were analyzed to compute the unreliability over time. 

The results of the UPPAAL analysis are shown in Figure 
7. The graphs show that the correct unreliability as computed
by FaultTree+ lies within the confidence interval computed by
UPPAAL. The results computed by DFTCalc were equal to
those computed by FaultTree+ to within four decimal places.
We thus conclude that the fault tree was correctly translated.

4.2 Attack tree: accessing bank account 

In this case study we present the analysis of the example 
AT described in Figure 2. The model was produced using 
ADTool, which already provides basic analysis features such as 
the inference of the minimal time for a successful attack. In 
order to perform further analyses, we translated the original 
model into a timed automata model, which was then analyzed 
with UPPAAL. The translation was made possible by the 
definitions of the meta-models of: 

1. ADTool XML format,
2. Unified AFT as described in Section 3.1,
3. UPPAAL model for timed automata [12],
4. UPPAAL XML format.
The translation workflow proceeds then in order 1 → 2 →

3 → 4. The transformations are specified in the Epsilon 
framework [13], and our tool automatically chooses the correct 
transformations based on the provided input and requested 
outputs. Human-readable results are obtained at the end of the 
workflow. In this case study, we gave the model as input to our 
tool and requested the fastest way to perform an attack. The 
solution we obtained is represented in Figure 8 by highlighting 
the nodes that are activated in the solution, together with the 
sequence in which they are completed. 

4.3 Attack-fault tree: redundant water pumps 

We will now examine a hybrid model which contains both 
FT basic events and AT attack steps. The model represents a 
couple of redundant water pumps controlled by valves, both of 
which are normally running. Under normal circumstances, each 
pump has a failure rate of 0.01. An attacker has several options 
to sabotage the installation: she can damage one of the pumps, 
introducing a new failure cause with a rate of 0.1, and/or she 
can sabotage one or both valves causing them to fail after 
exactly 25 time units. We assign a cost of 10 to the sabotage of 
a pump and 100 to sabotage any valve. 

Figure 9 shows the results of the analysis for attackers 
expending different costs. We observe that, as expected, an 
attacker with sufficient budget can cause a system failure after 
25 time units by sabotaging both valves. We also see that there 
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is very little difference in the unreliability after 25 time units 
when sabotaging both pumps (cost 20) compared to sabotaging 
one valve (cost 100), so the pumps will be a much more 
attractive target for a medium-budget attacker than the valves. 

5 CONCLUSION AND FUTURE WORK 

This paper presents a meta-model encompassing many 
different fault tree and attack tree formalisms as well as 
combinations thereof. Model transformations are used to 
convert between this meta-model and the existing formalisms, 
and to a novel analysis framework, based on timed automata, 
capable of analyzing models combining features of multiple 
formalisms. Application to case studies demonstrates the 
correctness and usefulness of the meta-model and 
transformations. 

Future work includes extending the meta-model to cover 
more formalisms covering topics like repairs and uncertainty. 
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