
The Dynamic Fault Tree Rare Event SimulatorF

Carlos E. Budde1 , Enno Ruijters2 , and Mariëlle Stoelinga1,3

1 Formal Methods and Tools, University of Twente, Enschede, the Netherlands
{c.e.budde,m.i.a.stoelinga}@utwente.nl

2 BetterBe, Enschede, the Netherlands mail@ennoruijters.nl
3 Department of Software Science, Radboud University, Nijmegen, the Netherlands

Abstract The dynamic-fault-tree rare event simulator, DFTRES, is a
statistical model checker for dynamic fault trees (DFTs), supporting the
analysis of highly dependable systems, e.g. with unavailability or unre-
liability under 10−30. To efficiently estimate such low probabilities, we
apply the Path-ZVA algorithm to implement Importance Sampling with
minimal user input. Calculation speed is further improved by selective
automata composition and bisimulation reduction. DFTRES reads DFTs
in the Galileo or JANI textual formats. The tool is written in Java 11
with multi-platform support, and it is released under the GPLv3. In
this paper we describe the architecture, setup, and input language of
DFTRES, and showcase its accurate estimation of dependability metrics
of (resilient) repairable DFTs from the FFORT benchmark suite.

1 Introduction

Our modern societies depend heavily on complex electro-mechanical systems,
making it essential to ensure that such systems are reliable. An industry-standard
technique to assess reliability is fault tree analysis. However, an unavoidable bot-
tleneck of this technique is that exact analysis becomes too memory-intensive for
complex dynamic fault trees (dfts [6]). Alternatively, Monte Carlo simulation
can be used to statistically estimate the likelihood of undesired events such as
system failure. Although constant in memory usage, this approach takes unac-
ceptably long times to converge when a system failure is rare, i.e. highly unlikely.
An effective solution then is to use rare event simulation (res [15]).

This paper presents DFTRES † : a statistical analysis tool for dfts that ap-
plies Importance Sampling (IS [10]). IS is one of the most efficient approaches
to perform res analyses, and allows DFTRES to drastically speed up accurate
estimations of rare failures in repairable dfts. Whereas most res techniques
rely on expert input, DFTRES allows a fully automatic application of IS [18].
Related work. Various tools exist to analyse dfts, see [19]. The model checker
Storm [11] offers a dft front-end. Storm produces exact results through model
checking, requiring the full state-space, and does not support repairs. Other
FThis work was partially funded by NWO project 15474 (SEQUOIA).
†Available at https://github.com/utwente-fmt/DFTRES.

http://orcid.org/0000-0001-8807-1548
http://orcid.org/0000-0002-5855-5282
http://orcid.org/0000-0001-6793-8165
https://github.com/utwente-fmt/DFTRES


2 C.E. Budde, E. Ruijters, M.I.A. Stoelinga

tools for rare event simulation of automata include Plasma Lab [12], where the
user must manually parameterise the model, and FIG [2] and modes [3], which
implement a res method other than IS, less suited to analyse dfts.

Previous versions of DFTRES were experimentally evaluated in [18] and [9],
where it was called “ftres.” In Sec. 3 we mention new features that have been
implemented ever since, most prominently weak-bisimulation reduction during
initial automata composition, and so-called forcing for time-bounded properties.
Organization of the paper. After some background in Sec. 2, we explain the
operation and structure of DFTRES in Sec. 3, and show its performance in Sec. 4.

2 Rare event simulation for fault trees

G1

G2 A

S1B S2

Insp

Figure 1: A repairable dft

Fault trees are an industry-standard graphical for-
malism for reliability analysis [19]. A (dynamic)
fault tree models possible failures of a system by
decomposing it into basic events, denoted by circles
and representing elemental failure causes of compo-
nents, and gates, denoted by various symbols and
representing how failures interact and which com-
binations of smaller failures lead to system failure.
Fig. 1 shows an example: the top AND-gate (G1) means that both G2 and A
must fail for the system to fail. G2 is a SPARE-gate, meaning that B and its
spares S1 and S2 must fail; but the spares cannot not fail before they are used.
Insp denotes a periodic simultaneous inspection and repair of all basic events.

When basic events are decorated with failure probabilities or rates, it is
possible to compute numerical resilience metrics of the system. These include
reliability, the probability that the system remains functional until some given
“mission time,” and also (for systems with repairable components) availability,
the average fraction of time that the system is functional.

For large fault trees, particularly with complex dynamic gates describing
time-dependent failure effects or with complex repair policies, exact numerical
analysis becomes infeasible due to time and memory exhaustion. Such systems

.dft (Galileo)

DFTCalc

.exp

.aut

.jani Results

Reliability

Availability
DFTRES

Simulation
&

Importance
Sampling

Optimization

State-space
exploration

.jani

.tra/.lab

Figure 2: The overall structure of DFTRES



DFTRES 3

may still be analyzed using Monte Carlo simulation, at the expense of requiring
many simulation runs for high accuracy, particularly when the event of interest
(system failure) is highly unlikely.

DFTRES addresses this problem using Importance Sampling with the Path-
ZVA algorithm [14]. This IS scheme effectively adjusts the failure rates to make
system failures more likely, performs simulation runs, then corrects for the ad-
justed failure rates to estimate the original failure probability. This allows for
high-accuracy estimations in relatively few simulation samples [18].

3 DFTRES

The architecture of DFTRES is de- 1 toplevel "G1";
2 "G1" and "G2" "A";
3 "G2" wsp "B" "S1" "S2";
4 "A" lambda=1.7e-5 dorm=1 phases=2 interval=1;
5 "B" lambda=1.1e-3 dorm=1 phases=3 interval=2;
6 "S1" lambda=0.0021 dorm=0 phases=1 interval=1;
7 "S2" lambda=0.0021 dorm=0 phases=1 interval=1;
8 "Insp" 2insp4 "A" "B" "S1" "S2";

Figure 3: (Extended) Galileo for Fig. 1

picted in Fig. 2: a fault tree in
the widely-used Galileo format
[20, 9, 17, 11] (e.g. Fig. 3) is trans-
lated into a network of automata
by DFTCalc [1], and input into
DFTRES. Alternatively, a network
of automata in jani format [4]
can be input directly. DFTRES then performs several optimizations to reduce the
state-space, generates (a part of) the composed state-space, and performs (IS)
simulations to estimate numeric metrics such as system reliability. The automata
and composed system can also be output for analysis by other tools.

DFTRES begins its analysis with an optimization stage (new since [9]): transi-
tions of the automata that cannot synchronize are removed and all automata are
reduced modulo weak bisimulation. Further, so-called don’t care optimization is
performed by collapsing and discarding groups of states without observable be-
havior. Pairs of automata with a small composed state-space (by default at most
256 states) are composed and reduced again, and this process is repeated until
no more compositions can be made.

Finally, to compute relevant metrics, simulation is performed using IS, namely
the Path-ZVA algorithm [14] and, (new since [9]) for time-bounded properties,
forcing [13]. Supported metrics are reliability (time-bounded or -unbounded
reachability) and availability (steady-state probability). Mean time to failure
(expected reward) can also be estimated, but not using IS. Simulation runs are
sampled, in parallel on multi-core systems, until a specified time bound or sim-
ulation number is reached, or a desired relative or absolute estimated error is
reached. Results are presented as (by default) 95% confidence intervals (cis)‡.

DFTRES is released under the GPLv3, and is cross-platform due to its im-
plementation in Java, without run-time dependencies. It requires only a Java
compiler and Make [7] to build. Galileo input is provided by DFTCalc, which is
supported on Linux and Mac. DFTRES is designed to be easily extensible to addi-
tional input formats and IS schemes. DFTRES’s command-line interface provides
‡While every effort is made to provide accurate confidence intervals, their coverage can
fall considerably below 95% due to the extreme probability distributions involved [8].



4 C.E. Budde, E. Ruijters, M.I.A. Stoelinga

many options, but typically requires only the model file, property, and desired ac-
curacy. For instance, “java -jar DFTRES.jar -a --relErr 0.05 model.dft”
estimates availability (-a) to a relative error of 0.05. More examples can be found
in an artifact prepared for experimental reproduction [5].

4 Experimental evaluation

We estimated the (un)reliability and (un)availability of four repairable dfts
from the FFORT benchmark [17]: Cabinets-2-2, FTPP-2-2-repair, HECS-2-2-
repair, and RBC. All experiments ran in an 8-core Intel® i7-6700 with 24 GB
RAM. The results are shown in Fig. 4.

FTPP HECS Cabinets RBC

10 -3 10 -2 10 -1 1
0

4

8

12

Mission time

R
un

ti
m

e
(s

)

(a) Unreliability: runtime

10 -3 10 -2 10 -1 1

10
-3

0
10

-2
0

10
-1

0

Mission time

Sy
st

em
un

re
lia

bi
lit

y

(b) Unreliability: estimate

200 400 600
0

0.5

1

1.5

·10−5

Runtime (s)

R
el

at
iv

e
C

I
w

id
th

(c) Unavailability: rel. error

Figure 4: Experimental results

We estimated the system unreliability (i.e. the probability that the system
fails before) mission times 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001. We built
95% cis for 5% relative error: Fig. 4b shows how the unreliability decreases
exponentially—from right to left—as a function of the mission time. Fig. 4a
plots the runtime needed for ci with 5% accuracy. Unlike traditional simulation,
runtime is almost independent of the value being estimated. Instead, the model
structure and complexity is the primary factor affecting analysis time, mainly
governed by the length of the shortest path(s) to a rare event.

Fig. 4c shows unavailability analyses. We let estimations run for 0.5, 1, 2,
5, and 10 minutes, and measured the relative width of the resulting ci. With
longer runtime DFTRES builds more accurate, narrower intervals: the precision
improves approximately as the square root of time, which can be explained by
observing that the standard error of the mean decreases as the square root of
the number of samples.

In [5] we provide an artifact to easily reproduce our experiments. It runs
in Debian-based Linux distributions, such as the virtual machine available at
https://figshare.com/articles/tacas20ae_ova/9699839.

https://dftbenchmarks.utwente.nl/other/fault_trees/cabinets/cabinets.2-2.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/ftpp/ftpp.2-2-repair.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/hecs/hecs_2_2_2_4.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/hecs/hecs_2_2_2_4.dft
https://dftbenchmarks.utwente.nl/other/fault_trees/rbc/rbc.dft
https://figshare.com/articles/tacas20ae_ova/9699839


DFTRES 5

References

1. Arnold, F., Belinfante, A., van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: A
tool for efficient fault tree analysis. In: Proc. SAFECOMP. LNCS, vol. 8153, pp.
293–301. Springer (2013). https://doi.org/10.1007/978-3-642-40793-2_27

2. Budde, C.E.: FIG: The finite improbability generator. In: TACAS. LNCS, vol.
12078, pp. 483–491. Springer (2020). https://doi.org/10.1007/978-3-030-45190-
5_27

3. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient sta-
tistical model checker for nondeterminism and rare events. STTT p. 22 (2020).
https://doi.org/10.1007/s10009-020-00563-2

4. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: TACAS. LNCS, vol. 10206, pp.
151–168. Springer (2017). https://doi.org/10.1007/978-3-662-54580-5_9

5. Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree
rare event simulator: experimental replication package (2020).
https://doi.org/10.6084/m9.figshare.12235889.v2

6. Dugan, J., Boyd, S.B.M.: Fault trees and sequence dependencies. In: Annual
Proceedings on Reliability and Maintainability Symposium. pp. 286–293 (1990).
https://doi.org/10.1109/ARMS.1990.67971

7. Feldman, S.I.: Make — a program for maintaining computer pro-
grams. Software: Practice and Experience 9(4), 255–265 (1979).
https://doi.org/10.1002/spe.4380090402

8. Glynn, P.W., Rubino, G., Tuffin, B.: Robustness properties and confi-
dence interval reliability issues. In: Rubino and Tuffin [16], pp. 63–84.
https://doi.org/10.1002/9780470745403.ch4

9. Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretínský, J., Parker, D., Quat-
mann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of tools for the analy-
sis of quantitative formal models. In: TACAS. LNCS, vol. 11429. Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_5

10. Heidelberger, P.: Fast simulation of rare events in queueing and relia-
bility models. ACM Trans. Model. Comput. Simul. 5(1), 43–85 (1995).
https://doi.org/10.1145/203091.203094

11. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. arXiv e-prints arXiv:2002.07080 (2020), https://arxiv.org/
abs/2002.07080

12. Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sam-
pling for statistical model checking. Theor. Comput. Sci. 649, 1–24 (2016).
https://doi.org/10.1016/j.tcs.2016.08.009

13. Nicola, V.F., Shahabuddin, P., Nakayama, M.: Techniques for fast simulation of
models of highly dependable systems. IEEE Transactions on Reliability 50(3),
246–264 (Sep 2001). https://doi.org/10.1109/24.974122

14. Reijsbergen, D., de Boer, P.T., Scheinhardt, W., Juneja, S.: Path-ZVA: general, ef-
ficient and automated importance sampling for highly reliable Markovian systems.
ACM TOMACS 28(3), 22:1 – 22:25 (Aug 2018). https://doi.org/10.1145/3161569

15. Rubino, G., Tuffin, B.: Introduction to rare event simulation. In: Rubino and Tuffin
[16], pp. 1–13. https://doi.org/10.1002/9780470745403.ch1

16. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley (2009). https://doi.org/10.1002/9780470745403

https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/978-3-030-45190-5_27
https://doi.org/10.1007/s10009-020-00563-2
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.6084/m9.figshare.12235889.v2
https://doi.org/10.1109/ARMS.1990.67971
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1002/9780470745403.ch4
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1145/203091.203094
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1016/j.tcs.2016.08.009
https://doi.org/10.1109/24.974122
https://doi.org/10.1145/3161569
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1002/9780470745403


6 C.E. Budde, E. Ruijters, M.I.A. Stoelinga

17. Ruijters, E., Budde, C.E., Nakhaee, M.C., Stoelinga, M., Bucur, D., Hiemstra, D.,
Schivo, S.: FFORT: A benchmark suite for fault tree analysis. In: ESREL. pp.
878–885 (2019). https://doi.org/10.3850/978-981-11-2724-3_0641-cd

18. Ruijters, E., Reijsbergen, D., de Boer, P.T., Stoelinga, M.: Rare event simulation
for dynamic fault trees. Reliability Engineering & System Safety 186, 220–231
(2019). https://doi.org/10.1016/j.ress.2019.02.004

19. Ruijters, E., Stoelinga, M.: Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Computer Science Review 15–16, 29–62 (2015).
https://doi.org/10.1016/j.cosrev.2015.03.001

20. Sullivan, K.J., Dugan, J.B.: Galileo user’s manual & design overview. www.cse.
msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm (1998), v2.1-alpha

https://doi.org/10.3850/978-981-11-2724-3_0641-cd
https://doi.org/10.1016/j.ress.2019.02.004
https://doi.org/10.1016/j.cosrev.2015.03.001
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm

	The Dynamic Fault Tree Rare Event Simulator

