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Abstract. The success of a security attack crucially depends on the
resources available to an attacker: time, budget, skill level, and risk ap-
petite. Insight in these dependencies and the most vulnerable system
parts is key to providing effective counter measures.

This paper considers attack trees, one of the most prominent security
formalisms for threat analysis. We provide an effective way to compute
the resources needed for a successful attack, as well as the associated
attack paths. These paths provide the optimal ways, from the perspective
of the attacker, to attack the system, and provide a ranking of the most
vulnerable system parts.

By exploiting the priced timed automaton model checker Uppaal CORA,
we realize important advantages over earlier attack tree analysis meth-
ods: we can handle more complex gates, temporal dependencies between
attack steps, shared subtrees, and realistic, multi-parametric cost struc-
tures. Furthermore, due to its compositionality, our approach is flexible
and easy to extend.

We illustrate our approach with several standard case studies from the
literature, showing that our method agrees with existing analyses of these
cases, and can incorporate additional data, leading to more informative
results.

1 Introduction

Security attacks are a primary concern for business and government organi-
zations, as they are a threat to vital infrastructure, such as internet banking,
power grids, health care and transportation systems. The challenge for secu-
rity engineers is to protect such systems, by providing countermeasures for the
most damaging and most likely attacks. Thus, defense against cyberattacks is
an optimization problem: given the available budget, what are the most effective
countermeasures.

Often security decisions are made informally, e.g. by brainstorming. More
structured approaches are based on spreadsheets and technical standards, like
FMEA [11], the AS/NZS 4360 standard [5], and Factor Analysis of Informa-
tion Risks (FAIR) [6]. Model-based approaches are gaining popularity, such as
the UML-based extension CORAS [1], the ADVISE method [21], and security
extension of the SAE standardized language AADL [17].
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One of the most prominent model-based security formalisms is attack trees
(ATs), see Figure 1. Much of its popularity comes from its hierarchical, intu-
itive representation of multi-step attack scenarios. A wide range of qualitative
and quantitative analysis methods for attack trees are available, see [20] for an
overview. The most well-known follow a bottom-up approach and propagate val-
ues from the leaves to the top of the tree. Although they are very efficient and
flexible, most current approaches cannot handle temporal and causal dependen-
cies, or shared subtrees. Also, existing approaches do not support realistic cost
structures. Finally, little attention is given to the important issue of attack path
generation and ranking: which steps are taken in the most dangerous attacks?

This paper provides a multi-objective optimization framework for attack
trees. We augment AT leaves with a rich cost structure that consists of vari-
ous components, such as time, skill, and resources. These components can be
dependent, e.g. time can depend on skill level. Our framework supports the
computation of a wide range of security metrics: (1) Attack values. Given an
attack tree, and a quantity of interest, we can compute its value: What is the
minimal time, resources, or skill level needed to complete a successful attack?
What is the maximal damage an attacker can do? (2) Attack paths. Apart from
the value of an attack, it is very useful to know the attack path leading to the
optimal attack. Note that the path is in fact a subtree, since optimal attacks of-
ten carry out several steps need in parallel. (3) Ranking. Apart from computing
the optimal attack values and path, we can also determine the top-10 of worst
attacks, which is very important to determine appropriate counter measures.
(4) Pareto-optimal curves that show trade-offs when multiple objectives conflict.
For instance, what is the minimal time needed to complete a successful attack
within a given budget? What is the maximal damage that can be incurred in
one year?

Technically, our framework is realized via Uppaal CORA: we translate each
attack tree gate and leaf into a priced timed automata (PTA). Together these
form a network of PTAs representing the entire attack tree. This modular ap-
proach yields a flexible framework that can easily be extended with future needs,
such as countermeasures. We express our security queries in weighted CTL, and
use the model checker Uppaal CORA [8] to obtain the cost optimal traces that
correspond to optimal attack paths in the AT.

We illustrate our approach with several well-known examples in attack tree
analysis, namely the forestalling release of software [18], obtaining administrator
privileges [19] and a password protected file [25]. We provide the results from two
perspectives: For the attacker, we consider cost and time, and for the attackee,
the incurred damage. Also, we have considered several attacker profiles into
consideration. Our analysis shows that the vulnerable paths in the system are
strongly linked to the skills and risk appetite of attacker. Hence, any security risk
analysis should be multifaceted, taking the potential attackers into consideration.

Related work. Attack trees; as popularized by Schneier [27], were intro-
duced by Weiss as threat logic trees [30] and by Amoroso as threat trees [3].
Amid several variants studied in literature, they can broadly be classified as
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static [19, 23, 26] or dynamic [15, 24] based on evolution of time. Classically, an
attack tree takes a single parameter such as time or cost [23, 27]. Buldas [14] et
al. introduces a multiparameter attack tree consisting of interdependent param-
eters. In [22], Lenin et al., while making a clear distinction between threat and
vulnerability landscape, improve the parallel model [18] by integrating attacker
profiles. A comprehensive overview of attack trees can be found in [20]. Some
other approaches to model the system description and attacker behaviour are
via attack graphs [28] or adversary based security analysis [13,16].

2 Graphical Security Modeling

2.1 Attack Trees

Attack trees (ATs) are an important formalism to model and analyze the security
of complex systems. An attack tree consists of a root, representing the attacker’s
goal. The root is further refined into subgoals via gates, until the subgoals cannot
be refined further and the basic attack steps (BASs) are reached, constituting
the leaves of the attack tree. When subtrees can be shared, ATs can be directed
acyclic graphs, rather than trees.

Gates. Classical attack trees model the propagation of success through AND-
and OR-gates: an AND-gate is a conjunctive composition of child nodes, in-
dicating that all children need to be successfully attacked for an attacker to
successfully execute the subgoal at hand. Similarly, the OR-gate is a disjunctive
union of child nodes, where an attacker has to execute at least one child node
successfully.

It has been widely recognized that temporal order is crucial in security. There-
fore, the sequential versions of the AND and OR gates, named SAND and SOR,
have been proposed [4, 25]. Both represent attacks executed from left to right:
Starting with the the leftmost child, the attacker will only start executing the
next subgoal (i.e., the subsequent child node) after all previous subgoals have
been executed successfully. The SAND gate is successful if all steps are exe-
cuted successfully; the SOR-gate is successful if any of its children is executed
successfully.

Example 1. The attack tree in Figure 1, combined with the values in Table 1,
models the forestalling of the release of some software, adopted from [14]. Here, a
competitor steals a piece of software code and then builds it into his own product,
as modeled by the top-level SAND gate. The OR gate at node Steal code shows
that the code can be stolen in three different ways: via Bribing, a Network Attack
or Physical robbery. Bribing is modeled as a two-step sequential process of first
successfully bribing a programmer and then obtaining the code, represented by a
SAND-gate. Similarly, one can employ a robber who has networking knowledge.
This can lead to two different attack paths modeled through a shared node. One
in which the hired person finds a bug and exploits it to obtain the code via a
network attack, and another path in which he is physically involved in a robbery
after being hired to steal the code. This dependency is again modeled through
a SAND gate.
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Basic attack steps. Basic attack steps (BASs) represent individual atomic
steps within a composite attack, and appear as leaves of the AT.

We consider a fixed set of attribute variables Attr = {T, a1, . . . an}. Here,
T is a special attribute, namely the time since the BAS was started. Other
attributes can be skill level, monetary costs, damage, difficulty, etc. We denote
by Val = (R∞≥0)n+1 the set of complete valuations of the attributes, and by
Val\t = (R∞≥0)n the set of valuations excluding time. For simplicity, we assume
that attribute variables take values in R∞≥0; handling other domains is technically
no more complex, but syntactically more cumbersome.

Each BAS is equipped with two preconditions Enable : Val\t → {0, 1} and
CanSucceed : Val→ {0, 1} that indicate when the BAS is enabled, and when it
can succeed. Each BAS also has an effect Eff that updates the attribute values
when the BAS is successfully executed. Preconditions are Boolean combinations
over linear equations over Attr. In this way, an attack step that requires (at
least) medium skill level is equipped with the enabling precondition Skill ≥ med
(where med is a suitable constant); and an attack step that takes between 90 and
100 time units for medium-skilled attackers gets a success precondition (Skill =
med)→ (90 ≤ T ≤ 100).

The effect Eff : Attr × Val\t → R≥0 → R≥0 is a function that updates the
values for the attributes when this BAS is started. For example, costs are in-
curred by the attacker, and damage is incurred by the attacked entity. These
effects are typically time dependent: the longer an attack takes, the higher
the costs and damage. We assume that time dependence is linear, i.e., is in-
curred with a fixed rate vi per time unit. Thus, the effect function is given by
Eff(ai, (p1, . . . , pn))(t) = fi+vi ·t, where fi = fi(p1, . . . pn) and vi = vi(p1, . . . pn)
are parameters that depend on the attribute values. The effects are summed to
the existing value of the variable, to obtain the cumulative effect.

Attacker profiles. An attacker profile is an assignment R : {a1, . . . an} → R≥0 of
the non-time attribute variables to concrete values. Thus, we obtain an initial
valuation of the attributes as (0, R(a1), . . . , R(an)).

Example. Consider an burglary that takes between 5 and 10 minutes to ex-
ecute for a medium-skilled attacker, between 1 and 2 minutes for a highly

Forestalling release

Steal code Use code in product

Bribing Network attack Physical robbery

Bribe programmer
Programmer

obtains the code

Hire robber having
knowlege in

Computer security

Bug in
computer

system Exploit bug

Robber
breaks into

system

Fig. 1. Attack tree modeling the forestalling of software.



Quantitative Attack Tree Analysis via Priced Timed Automata 5

skilled attacker, and cannot be performed by a low-skilled attacker. All attack-
ers steal 1000 dollars worth of goods if they are successful, but the medium-
skilled attacker also inflicts 500 dollars of property damage in the process.
This BAS can be described using the attribute set Attr = {T,Skill,Damage}.
It has enabling precondition Enable(s, d) = s ≥ med and success condition
CanSucceed(t, s, d) = (s = med ∧ 5 ≤ t ≤ 10) ∨ (s = hi ∧ 1 ≤ t ≤ 2). The effect
is Eff(Damage, (s, d))(t) = 1000 if s = hi, 1500 otherwise and Eff(a, V )(t) = 0
for all a 6= Damage (here med and hi are appropriate constants).

Based on the explanation above, attack trees can be defined as follows.

Definition 1 (AT elements). We define the set of AT gate types as Gates =
{AND,SAND,OR,SOR}, the set of BAS information as BAI, where each element
of BAI is a triple (Enable,CanSucceed,Eff) of the functions described above. We
denote Elements = Gates ∪ BAI.

Definition 2 (Attack tree). An attack tree A is a tuple (V,Child,
Top,Attr, R, L), where
– V is a finite set of nodes.
– Child : V → V ∗ maps each node to its child nodes.
– Top ∈ V is the unique top level element, representing the goal of the attacker.
– Attr is the set of attributes.
– R is the attacker profile.
– L : V → Elements is a labelling function that assigns an AT element to each

node in V .

ATs must be well-formed. We define the set of edges of A by E = {(v, w) ∈
V 2 | ∃i . w = (Child(v))i} and Leaves = {v ∈ V | Child(v) = ε}. We require for
each AT that (a) the graph (V,E) is a directed acyclic graph with a unique root
Top ∈ V from which all other nodes are reachable; (b) the labelling function
assigns to each leaf in the tree a value in BAI and to each non-leaf an element
in Gates, i.e., L(v) ∈ BAI iff v ∈ Leaves.

Attacker Values
BAS Profile Skill Time Cost Cost to company

(in days) (in US $) (in US $)

Bribe a programmer Generic attacker Low 15-20 1500 + 50t 500.000
Generic attacker Med 10-20 1000 + 150t 500.000
Generic attacker High 0-10 500 500.000
Software Engineer Any 0-5 5000 + 100t 500.000

Programmer obtains the code Generic attacker Any 5-15 1000 + 100t 1.000.000
Software Engineer Any 0-5 2000 + 50t 1.000.000

Hire robber with knowledge Any Any 5-15 4000 + 50t 0
of computer security
Bug in Computer system Any Low 15-20 1000 + 50t 0

Any Med 5-10 1000 + 50t 0
Any High 0-5 1000 + 50t 0

Person exploits the bug Any Any 0-5 1000 + 50t 1.000.000
Person breaks into the system Any Any 0-5 2000 + 100t 400.000
Code is completed into product Any Any 5-15 2000 + 50t 100.000

Table 1. Values used for annotating leaves of Figure 1
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2.2 Metrics on ATs.

Our framework can be used to determine several important security metrics.
(1) (Constrained) attack values. For any of the attributes ai, we can compute
the minimum value along the tree. These values can be affected by constraints
on other attributes. For instance, we can compute the minimum time needed
to complete an attack within a maximum budget and skill level. (2) Pareto
optimal curves. For any pair of attributes, we can compute the minimum value
needed of one attribute given a value of the other. By varying the bound of one
attribute, we can generate curves indicating the relation between these minima.
For instance, there is typically a trade-off between spending more time or more
money; a Pareto curve shows for every budget how much time is needed for the
attack. (3) Attack paths. When computing the minimal value of an attribute that
can complete an attack, we generate a concrete attack path showing the steps
an attacker can take to perform the attack incurring as little of the attribute as
possible. For instance, considering Figure 1, to reach the goal in the minimum
time, we can obtain the attack trace which consists of Hire a robberer, Robberer
breaks into system and Use code in product. (4) Ranking. In addition to the single
minimum of an attribute and a corresponding attack path, we can enumerate
further attacks in increasing value of the attribute. We can, for example, list the
ten cheapest attacks on a given system, or all attack paths that meet a given
time constraint. For example, in Figure 1, with the attributes in Table 1, the
optimal cost is 6000 units and the second best cost is 8500 units.

3 Priced Timed Automata

The priced timed automata model. Priced timed automata (PTA) [8] ex-
tend timed automata [2], by adding costs to locations and actions. In the follow-
ing definition, we denote by Φ(X) the set of all possible boolean predicates over
a set X of clocks.

Definition 3. A priced timed automaton P is a tuple 〈L, l0, X,Act , E, I,
C〉where:

– L is a finite set of locations,
– l0 ∈ L is the initial state,
– X is a set of clock variables,
– Act is a set of actions, also called signals or labels,
– E ⊆ L × Φ(X) × Act × 2X × L gives the set of transitions. Here an edge
〈l, φ, a, λ, l′〉 represents a transition from state l to state l′ taking an action
a. This transition can only be taken when the clock constraint φ over X is
true, and the set λ ⊆ X gives the set of clocks to be reset with this transition,

– I : L→ Φ(X) assigns invariants to locations,
– C : L ∪ E → Nn≥0 assigns cost rates to locations and costs to edges.

Definition 4. A trace of a PTA P = 〈L, l0, X,Act , E, I, C〉 is a sequence of
states and transitions ρ = l0

a0−→
λ0

t0
c0 l1

a1−→
λ1

t1
c1 l2 . . . where:
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– For every i, there is some transition Ti = (li, φi, ai, λi, li+1) ∈ E.
– For every i, ci = C(Ti) + ti · C(li) is the cost incurred in the transition.
– There is an initial clock valuation X0 = 0.
– After every transition, there is a new clock valuation Xi+1 = (Xi+ti)[λi = 0]

obtained by increasing every clock variable in Xi by ti and resetting all clocks
in λi to 0.

– Every clock valuation Xi + t for t < ti satisfies the invariant I(li).
– The clock valuation Xi + ti satisfies φi for every i.

Parallel composition. The parallel composition operator ‖ allows one to con-
struct a large PTA from several smaller ones. The component PTAs synchronize
their transitions via joint signals. For example, a basic attack step can send a
‘success’ signal to its parent gate, based on which this gate may itself succeed
or wait for signals from its other children. Our models use broadcast signals,
which can be either output, denoted with an exclamation mark (e.g. ‘succ!’),
or input, denoted with a question mark (e.g. ‘succ?’). We require PTAs to be
input-enabled, that is, all input actions of a PTA are enabled at any location,
at any time. Thus, if some PTA performs a transition labeled with an output
action a!, then all receiving PTAs synchronize by taking an a?-labeled transition.
The formal definition can be found in the Uppaal CORA documentation [29], or
in [9].

Queries. We express our security questions in an extension of the Weighted
CTL logic [12], over a PTA whose locations l are decorated with a set of atomic
propositions Prop(l) ⊆ AP . We slightly extend the syntax given by [10]: Rather
than providing a single constraint v ∼ c asking that value v meets bound c, we
need a vector of constraints xi ∼ ci, asking that all values vi meets their bounds
ci.

Definition 5. The syntax of the WCTL logic is given by the following grammar:

WCTL 3 φ, ψ ::= p | ¬φ | φ ∧ ψ | ∃(φ U∼c ψ) | ∀(φ U∼c ψ)

Where p ∈ AP, c ∈ Rn≥0, and ∼ ∈ {<,≤,=,≥, >}n.

The semantics of the boolean operators follows the usual conventions. The ex-
istential until operator ∃(φU∼cψ) is true if there exists a trace of the PTA in
which some state sf satisfies ψ, all states before sf satisfy φ, and the total
costs incurred before reaching sf satisfy the relation ∼ c. Note that time is con-
sidered a cost in this notation. The universal until operator is similar, except
that the conditions must hold for every trace. As usual, ∃♦∼cφ is shorthand for
∃(true U∼cφ).

Uppaal CORA. Uppaal CORA is an extension of Uppaal with an additional
variable Cost used for optimal scheduling and cost optimal reachability analysis.
With the inbuilt Best trace option; it can be used to it find an optimal trace [7].
The rate of change of cost is specified as Cost′. Here, the optimal path refers to
the trace with the lowest accumulated costs.



8 Kumar, Ruijters, Stoelinga

4 Analyzing Attack Trees via Price Timed Automata

To analyze an attack tree, we provide a compositional semantics in terms of
priced timed automata. That is, we translate each AT element into a PTA and
obtain the PTA for the entire AT by putting together all element PTAs via
the parallel composition operator ‖. Then, we analyze ATs by formulating the
security measures as queries in the logic mWCTL, which is a slightly extended
version of standard weighted computational tree logic that allows us to perform
multi-criterion optimization.

In this way, we obtain a versatile and flexible framework for AT analysis.
Indeed, if one wants to add a new AT element to the framework, one can simply
provide the AT translation, while leaving the rest of the framework unchanged.

4.1 From Attack Trees to Price Timed Automata

Fig. 2. PTA for a basic attack step. Here v is a unique identifier for the BAS, x
is a clock to track the duration of BAS[v], T min and T max are the minimum
and maximum times, costs is an array keeping track of all accumulated costs,
and costs ′ is an array for variable costs.

Basic Attack Steps The PTA for a basic attack step v is shown in Figure 2.
This PTA models the attacker’s choice of whether and when to execute basic
attack step, and tracks the time and costs used to do so.

Formally, we convert a BAS S with BAI (Enable,CanSucceed,Eff), given
attacker profile R, into a PTA P (S) = 〈L, l0, X,Act , E, I, C〉 with elements:

– L = {I, A,B, F,D}
– l0 = I
– X = {x}
– Act = {ActS?, succS !, failS !, τ}
– E = {〈I,>,ActS?, ∅, A〉, 〈A,Enable(R), τ, {x}, B〉,

〈B,>, failS !, ∅, F 〉, 〈B,CanSucceed(R), succS !, ∅, D〉}
– I(l) = >

– C(e) =


⊕n

i=1 Eff(ai, R)(0) if e = 〈A,Enable(R), τ, {x}, B〉⊕n
i=1(Eff(ai, R)(1)− Eff(ai, R)(0)) if e = B

0 otherwise



Quantitative Attack Tree Analysis via Priced Timed Automata 9

Here we slightly abuse the notation so that f(R) denotes the result of apply-
ing f to the valuation obtained from R of all the attributes, and

⊕
denotes the

combination of elements into a vector.
Initially, the BAS waits for an activation signal. As it is received from the

parent, the attacker may begin executing the step by incurring the fixed costs.
The execution of a BAS is bounded by the minimum and maximum time to
complete the attack. While the step is being performed, the variable costs are
incurred. The attack may fail at any time, stop incurring further costs and send
a failure signal to its parents. Otherwise, it succeeds between the minimum and
maximum time constraint for the step and transmits a success signal.

Gates To model attacker preferences and behavior as illustrated in example
1, we distinguish between sequential and parallel gates. The automata for the
parallel AND gate is shown in Figure 3 while the automata for sequential AND
gate is shown in Figure 4.

The gates depicted here have only two children. We can construct PTAs hav-
ing more than two children, however this is cumbersome and requires many more
states. Hence, we express AT gates with multiple children by simply chaining
two-input gates: For example, an AND-gate with inputs A, B, and C can also
be expressed as A ∧ (B ∧ C).

Fig. 3. PTA for parallel AND gate of node v, when child(v) = c1c2.

Note that the semantics of OR and AND gates are identical except that the
behaviours of success and failure are inverted.

The PTAs for these gates begin by waiting for their activation signal, and
activating their children. After this, they wait for one of their children to send a
signal. For an AND gate, receiving a failure signal always leads the gate to emit
its own failure signal, since it is no longer possible for both children to succeed.
Conversely, when an OR gate receives one success signal, it always emits its own
success. When both children of an AND or OR gate have succeeded or resp.
failed, the gate also succeeds or fails.

The sequential gates operate similarly, but they enforce an ordering on their
children. First the leftmost child is activated, and the gate waits for a signal
from this child. In case of an SAND gate, success of the first child leads to an
activation of the second child, and the success of this child cause the success of
the gate. Failure of either child leads to failure of the gate, possibly before even
activating the second child. The behavior of SOR is similar to sequential AND
with success and failure signals swapped.
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Fig. 4. PTA for sequential AND gate of node v, when child(v) = c1c2.

Combining the nodes. For an attack tree A, the PTA associated with A is ob-
tained as the parallel composition of the PTAs for all the nodes, and an additional
PTA ATop. If we denote by P (v,A) the PTA corresponding to node v of attack
tree A, the total PTA consists of PA = P (v1, A)||P (v2, A)|| . . . ||P (vn, A)||ATop.

Fig. 5. Automaton for the attack goal Top

The top-level gate Top is associated with a second PTA ATop, shown in Figure
5 that initializes the attack by generating an activation signal for Top. Moreover,
it has a clock xTop that tracks the global time, and observes successful completion
of an attack via its input succ[Top]?. Thus, the location ‘Goal’ indicates that an
attacker has reached the goal.

4.2 Quantitative Analysis of Attack Trees

Given the PTA for an attack tree, we can compute the security metrics as enu-
merated in Section 2.2 as follows:

(Unconstrained) attack values and attack paths: The Uppaal CORA
program has a built-in method to find an optimum if only one cost needs to be
tracked. Here, we obtain the Optimal accumulated costs through the ‘Best first’
function built-in Uppaal CORA.

(Constrained) attack values and attack paths: Optimal attack values
can be obtained by repeatedly querying for the existence of traces reaching the
attack goal with increasingly tight constraints. When the tightest possible bound
has been obtained, this corresponds to an optimum. Since a positive result for
the query also produces a trace that satisfies it, this procedure also yields an
optimal attack path.

For example, to obtain the minimum time to succeed in the AT in Figure
1 given a cost limit of 10000 (assuming this is the only cost variable), we first
query ∃♦xTop≥0,C≤10000(PTop.Goal) to obtain some successful attack and its corre-
sponding time, e.g. Suppose this yields an attack that takes 10 days to complete,
then we perform a new query ∃♦xTop<10,C≤10000(PTop.Goal) to try to find a faster
attack. If no such attack exists, we know that the minimal time to complete an
attack given the budget is 10 days, and we have obtained an attack path that
succeeds in this time and budget.
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Ranking: To find different attacks ranked according to their cost, we repeat
the procedure above, each time excluding the attack paths we have already
found. For example, if the attack consisting of BASs 1 and 3 is the fastest
possible attack, the second-fastest is found using the query ∃♦xTop≤T (PTop.Goal∧
¬(P (v1, A).Success ∧ P (v3, A).Success)) and finding the smallest value for T to
obtain the second-fastest attack. This process can be repeated until the desired
number of optimal attacks has been found.

Pareto optimal curves: Pareto optimal curves can be obtained by finding
the optimal attacks subject to an increasing constraint. For example, to find
the curve of minimal time vs. cost, we begin by finding the minimal time to
attack, and computing the lowest-cost attack that meets this time bound. Then,
we compute the minimal time to attack with a smaller budget, and again find
the lowest-cost attack that meets the new time bound. This process is repeated
until no attacks exist that meet the latest budget.

To illustrate, consider again the attack tree in Figure 1. The minimal time
to complete an attack is 5 days, and the lowest-cost attack that meets this time
limits costs $9250. The fastest attack that costs less than $9250 takes 10 days,
and the lowest cost attack that can be performed within 10 days costs $8500.
There is no attack that costs less than $8500. Thus we obtain the pareto curve
shown in Figure 7.

5 Case Studies

Profile Criterion Attack Attack Path
value BAS Time Cost

Generic attacker Minimum cost 7250 Dictionary 0 - 15 7250
2nd best min. cost 7250 Brute force 0 - 15 7250
Minimum time 15 Bruteforce 0 - 15 7250
Min. cost to company 0 Guessing 0 - 15 7250

Social Worker Minimum cost 4000 Generic reconnaissance 0 - 0 50
Phone trap Execution 0 - 15 3500

2nd best min. cost 4500 Generic reconnaissance (fails) 0 - 0 500
Physical reconnaissance 0 - 0 500
Key logger local installation 0 - 5 1750
Password intercept 5 - 10 1750

Minimum time 10 Generic reconnaissance (fails) 0 - 0 500
Physical reconnaissance 0 - 0 500
Key logger local installation 0 - 5 1750
Password intercept 5 - 10 1750

Min. cost to company 0 Dictionary 0 - 15 7250

Table 2. Analysis results for the cracking password protected file.

We demonstrate our approach through three well-known case studies taken
from the literature. For each case, we analyze optimal attack values such as
time and cost for the attacker, and the minimal damage borne by the company
by taking different attacker profiles. Here, we consider the attacker’s resources
(time and budget), skills, motivation, access to infrastructure, risk appetite, and
preferences as attributes of a rational attacker.
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Fig. 6. Analysis of attacker attributes in all three case studies.

As is often the case in security analysis, it is difficult to obtain precise data,
and our guesses are not intended to reflect reality, but rather to illustrate the
analysis method.

The attack steps are decorated with the time required to successfully execute
the step, as well as fixed and variable costs incurred by the attacker. These
values are specified for the different attacked roles and skills levels. A cost for
the attacked company is also included, but this is independent of the attacker
profile.

Our analysis can provides insightful information about vulnerable paths and
values relevant to risk managers. An input table is provided as Table 1 for Case
study 1 to illustrate our methodology and we use similar scale to perform other
case studies provided in the paper. The exact values for other case studies will
be provided in a detailed report.
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Fig. 7. Pareto curve of attack tree in
Figure 1

Forestalling release of software. As
elaborated in Example 1, the AT in
Figure 1 models the forestalling of
software from [18]. We consider two
attacker profiles: A generic attacker
and a software engineer. The generic
attacker is profit-motivated and has a
high risk appetite, but is not partic-
ularly skilled in this type of attack.
The software engineer has better ac-
cess, skills, equipment, but low risk
appetite. The role of the attacker and
the skill level are explicitly included
in the attacker profile, while the other
attributes are reflected in the values of
time and cost to perform the step.

Formally, the profile of the generic
attacker is defined by RGA(Role) =
‘Generic Attacker′ and RGA(Skill) = ‘Low′. Similarly, the profile for the software
engineer is RSE(Role) = ‘Software Engineer′ and RSE(Skill) = ‘High′.
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Table 1 shows the input parameters. The analysis results are presented as a
Pareto curve in Figure 7, where the generic attacker requires 10 days incurring
a minimum cost of $9250 while a software engineer incurs a cost of $8500, but
can complete the attack in 5 days.

Here, we see that both attack values and the choice of attack path heavily
depend on the attacker profile. In contrast to the generic attacker whose cost
optimal attack trace is to bribe a programmer, a better skilled software engineer
exploits a bug in the computer system to steal the code. The minimum time
required to accomplish the attack also heavily depends on which attack steps
are executed and when. While a generic attacker takes 10 days to successfully
execute the attack by physical robbery, a software engineer with insider benefits
takes only 5 days to accomplish his goal. Also, there is an attack trace i.e Hire a
robber, Robber breaks into system, Code is completed into product which results in
an optimum Cost to company as $500,000 irrespective of the considered attacker
profiles.

Cracking a password protected file. The attack tree depicted in Figure 8 models
an attack on a password protected file. It is taken from [25] and modified to add
SAND and SOR gates. The goal of the attack is to obtain a password. This, can
be done by either performing a brute force attack or taking a multistep approach
of trying a password attack. To model different attacker behavior, we take two
attackers profiles into account.

A generic attacker who is a profit-motivated, skilled professional willing to
bear penalties; and a social worker, a popular public figure who is also profit-
motivated, but has a low risk appetite. Table 2 tabulates the optimum attack
values and traces which illustrate that adversarial behavior greatly depends on
his possessed attributes and his perceived goal. While a social worker; being
good in social engineering can crack the password in minimum 10 days through
Physical reconnaissance, he prefers Generic reconnaissance for achieving his goal,
incurring the minimum cost of $4000 US. In contrast, a generic attacker prefers

Password attack success

Cracking Alternatives

Guessing Dictionary Bruteforce

Password attack

Social Engineering

Email/Phone trap Execution and User trapped

Email trap
Execution

Phone trap
Execution

Key logger

Password Intercept
Key logger instal-
lation alternatives

Remote

Generic Re-
connaissance

Payload Crafting
Email file
Execution

Physical

Physical Re-
connaissance

Keylogger local
Installation

Fig. 8. Dynamic Attack Tree modelling the attack on password protected file.
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Obtain administrator privileges

Access System Console Obtain administrator password

Enter Computer Centre
Corrupt

sys. Admin

Guess Password
Look over Sys.

Admin Shoulder
Trojan Horse
SA accountBreak into

Computer Centre
Unattended Guest

Obtain password file Encounter Guessable Password

Fig. 9. To obtain administrator privileges.

more technical approaches like Bruteforce in achieving his goal in a minimum
time of 15 days and Dictionary attack by incurring the minimum cost of $7250.

Obtaining administrator privileges. The goal of the attack tree in Figure 9 is
to obtain administrator privileges and has been adopted from [19]. We consider
three different attacker profiles for our analysis.

A generic attacker who is a professional hacker, with high risk appetite and
malicious intentions to disrupt the availability of the system; a script kiddie
fearful by conscience trying to hack just for fun and who has low risk taking
ability; and an insider: a colleague of a system administrator with better access
to the computer center. The insider, knowing system details expects a huge profit
from the attack and is this willing to bear risk to a greater extent. The results
in Figure 6(b) show that the colleague of the system administrator,knowing
the vulnerabilities of the system, can reach the goal with minimal investments.
Having less resources, a juvenile attacker’s optimal cost and time are both higher
than professional generic attacker and the malicious insider. Note that the fastest
attack may not be the cheapest one due to several attack steps being performed
concurrently under different constraints of time and base costs.

Figure 6 provides a succinct representation of these different attack scenar-
ios. We put the attacker objectives as vertices (i.e Minimum cost, Minimal time,
Risk appetite, Cost to company) and the connecting lines are the attacker pro-
files (discussed is the case descriptions). The figure shows a trade-off among
different attack values for the considered attacker profiles which an enterprise
risk manager can use to effectively plan countermeasures.

6 Conclusion

We have presented a framework of security risk analysis by reducing a multi-
parameter attack tree into priced timed automata. By slightly deviating from
the strict formalism of attack trees by allowing shared subtrees, we preserve the
intuitive representation of attack scenarios while also providing insightful quali-
tative and quantitative information in terms of optimal attack paths and values.
Furthermore, our analysis takes temporal dependencies into account by defining
the semantics of SAND and SOR gates.
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As future work, we plan to analyze case studies incorporating realistic values,
and to extend our framework by including success probabilities of basic attack
steps. We see clear parallels between our approach and stochastic games and in
the future we would like to integrate the best of both.
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PASS (318003) and by the STW-ProRail partnership program ExploRail under
the project ArRangeer (12238).
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