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Abstract. Costs and rewards are important ingredients for many types
of systems, modelling critical aspects like energy consumption, task com-
pletion, repair costs, and memory usage. This paper introduces Markov
reward automata, an extension of Markov automata that allows the mod-
elling of systems incorporating rewards (or costs) in addition to nonde-
terminism, discrete probabilistic choice and continuous stochastic timing.
Rewards come in two flavours: action rewards, acquired instantaneously
when taking a transition; and state rewards, acquired while residing in
a state. We present algorithms to optimise three reward functions: the
expected cumulative reward until a goal is reached, the expected cumula-
tive reward until a certain time bound, and the long-run average reward.
We have implemented these algorithms in the SCOOP/IMCA tool chain
and show their feasibility via several case studies.

1 Introduction

The design of computer systems involves many trade offs: Is it cost-effective to
use multiple processors to increase availability and performance? Should we carry
out preventive maintenance to save future repair costs? Can we reduce the clock
speed to save energy, while still meeting the required performance bounds? How
can we best schedule a task set so that the operational costs are minimised? Such
optimisation questions typically involve the following ingredients: (1) rewards or
costs, to measure the quality of the solution; (2) (stochastic) timing to model
speed or delay; (3) discrete probability to model random phenomena like failures;
and (4) nondeterminism to model the choices in the optimisation process.

This paper introduces Markov reward automata (MRAs), a novel model that
combines the ingredients mentioned above. It is obtained by adding rewards
to the formalism of Markov automata (MAs) [15]. We support two types of
rewards: Action rewards are obtained directly when taking a transition, and state
rewards model the reward per time unit while residing in a state. Such reward
extensions have shown valuable in the past for less expressive models, for instance
leading to the tool MRMC [24] for model checking reward-based properties over
CTMCs [21] and DTMCs [1] with rewards. With our MRA model we provide a
natural combination of the EMPA [3] and PEPA [9] reward formalisms.

By generalising MAs, MRAs provide a well-defined semantics for generalised
stochastic Petri nets (GSPNs) [13], dynamic fault trees [4] and the domain-
specific language AADL [5]. Recent work also demonstrated that MAs (and hence
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MRAs as well) are suitable for modelling and analysing distributed algorithms
such as a leader election protocol, performance models such as a polling system
and hardware models such as a processor grid [31].

Model checking algorithms for MAs against Continuous Stochastic Logic
(CSL) properties were discussed in [20]. Notions of strong, weak and branching
bisimulation were defined to equate behaviourally equivalent MAs [15,28,12,31],
and the process-algebraic language MAPA was introduced for easily specifying
large MAs in a concise manner [32]. Several types of reduction techniques [34,33]
have been defined for the MAPA language and implemented in the tool SCOOP,
optimising specifications to decrease the state space of the corresponding MAs
while staying bisimilar [30,18]. This way, MAs can be generated efficiently in
a direct way (as opposed to first generating a large model and then reducing),
thus partly circumventing the omnipresent state space explosion. Additionally,
the game-based abstraction refinement technique developed in [6] provides a
sound approximation of time-bounded reachability over a substantially reduced
abstract model. The tool IMCA [17,18] was developed to analyse the concrete
MAs that are generated by SCOOP. It includes algorithms for computing time-
bounded reachability probabilities, expected times and long-run averages for sets
of goal states within an MA.

While the framework in place already works well for computing probabilities
and expected durations, it did not yet support rewards or costs. Therefore, we
extend the MAPA language from MAs to the realm of MRAs and extend most of
SCOOP’s reduction techniques to efficiently generate them. Further, we present
algorithms for three optimisation problems over MRAs. That is, we resolve the
nondeterministic choices in the MRA such that one of three optimisation criteria
is minimised (or maximised): (1) the expected cumulative reward to reach a set
of goal states, (2) the expected cumulative reward until a given time bound, and
(3) the long-run average reward.

The current paper is a first step towards a fully quantitative system de-
sign formalism. As such, we focus on positive rewards. Negative rewards, more
complex optimisation criteria, as well as the handling of several rewards as multi-
optimisation problem are important topics for future research. For a more de-
tailed version of this paper with extended proofs we refer to [19].

2 Markov reward automata

MAs were introduced as the union of Interactive Markov Chains (IMCs) [23]
and Probabilistic Automata (PAs) [27]. Hence, they feature nondeterminism, as
well as Markovian rates and discrete probabilistic choice. We extend this model
with reward functions for both the states and the transitions.

Definition 1 (Background). A probability distribution over a countable set S
is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. For S′ ⊆ S, let µ(S′) =∑

s∈S′ µ(s). We write 1s for the Dirac distribution for s determined by 1s(s) = 1.
We use Distr(S) to denote the set of all probability distributions over S.
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Given an equivalence relation R ⊆ S × S, we write [s]R for the equivalence
class of s induced by R, i.e., [s]R = {s′ ∈ S | (s, s′) ∈ R}. Given two probability
distributions µ, µ′ ∈ Distr(S) and an equivalence relation R, we write µ ≡R µ′

to denote that µ([s]R) = µ′([s]R) for every s ∈ S.

2.1 Markov reward automata

Before defining MRAs, we recall the definition of MAs. It assumes a countable
universe of actions Act, with τ ∈ Act the invisible internal action.

Definition 2 (Markov Automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, ↪−→, 〉, where

– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions, including τ ;
– ↪−→ ⊆ S ×A× Distr(S) is the probabilistic transition relation;
–  ⊆ S × R>0 × S is the Markovian transition relation;

If (s, α, µ) ∈ ↪−→, we write s
α
↪−→ µ and say that action α can be executed from

state s, after which the probability to go to each s′ ∈ S is µ(s′). If (s, λ, s′) ∈ ,
we write s λ s′ and say that s moves to s′ with rate λ.

A state s ∈ S that has at least one transition s
a
↪−→ µ is called probabilistic.

A state that has at least one transition s λ s′ is called Markovian. Note that a
state could be both probabilistic and Markovian.

The rate between two states s, s′ ∈ S is R(s, s′) =
∑

(s,λ,s′)∈ λ, and the
outgoing rate of s is E(s) =

∑
s′∈S R(s, s′). We require E(s) <∞ for every state

s ∈ S. If E(s) > 0, the branching probability distribution after this delay is
denoted by Ps and defined by Ps(s′) = R(s,s′)

E(s) for every s′ ∈ S. By definition of
the exponential distribution, the probability of leaving a state s within t time
units is given by 1 − e−E(s)·t (given E(s) > 0), after which the next state is
chosen according to Ps. Further, we denote by A(s) the set of all enabled actions
in state s.

MAs adhere to the maximal progress assumption, prescribing τ -transitions to
never be delayed. Hence, a state that has at least one outgoing τ -transition can
never take a Markovian transition. This fact is captured below in the definition
of extended transitions, which is used to provide a uniform manner for dealing
with both probabilistic and Markovian transitions.

Definition 3 (Extended action set). Let M = 〈S, s0, A, ↪−→, 〉 be an MA,
then the extended action set of M is given by Aχ = A ∪ {χ(r) | r ∈ R>0}.
The actions χ(r) represent exit rates and are used to distinguish probabilistic
and Markovian transitions. For α = χ(λ), we define E(α) = λ. If α ∈ A, we set
E(α) = 0. Given a state s ∈ S and an action α ∈ Aχ, we write s −α→ µ if either

– α ∈ A and s
α
↪−→ µ, or

– α = χ(E(s)), E(s) > 0, µ = Ps and there is no µ′ such that s
τ
↪−→ µ′.
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A transition s −α→ µ is called an extended transition. We use s −α→ t to denote
s −α→ 1t, and write s → t if there is at least one action α such that s −α→ t. We
write s −α,µ−−→ s′ if there is an extended transition s −α→ µ such that µ(s′) > 0.

Note that each state has an extended transition per probabilistic transition,
while it has only one for all its Markovian transitions together (if there are any).

We now formally introduce the MRA. For simplicity of the reward functions,
we chose to define MRAs in terms of extended actions. Hence, instead of two
separate probabilistic and Markovian transition relations, there is only one tran-
sition relation. This also simplifies the notion of bisimulation introduced later.

Definition 4 (Markov Reward Automata). A Markov Reward Automaton
(MRA) is a tuple M = 〈S, s0, A, T, ρ〉, where

– S is a countable set of states, of which s0 ∈ S is the initial state;
– A ⊆ Act is a countable set of actions;
– T ⊆ S × Aχ × R≥0 × Distr(S) is the transition relation including action

rewards;
– ρ : S → R≥0 is the state-reward function.

We require for each s ∈ S that there is at most one transition labeled with χ(·).
Further, we require that T is countable and write s −α→r µ if (s, α, r, µ) ∈ T .

The function ρ associates a real number to each state. This number may be
zero, indicating the absence of a reward. The state-based rewards are gained
while being in a state, and are proportional to the duration of this stay. The
action-based rewards are gained instantaneously when taking a transition and
are included directly in the transition relation.

2.2 Paths, policies and rewards

As for traditional labelled transition systems (LTSs), the behaviour of MAs
and MRAs can also be expressed by means of paths. A path in M is a finite

sequence πfin = s0 −a1,µ1,t1−−−−−→r1 s1 −a2,µ2,t2−−−−−→r2 . . . −
an,µn,tn−−−−−→rn sn from some state s0

to a state sn (n ≥ 0), or an infinite sequence πinf = s0 −a1,µ1,t1−−−−−→r1 s1 −a2,µ2,t2−−−−−→r2

s2 −a3,µ3,t3−−−−−→ . . . , with si ∈ S for all 0 ≤ i ≤ n and all 0 ≤ i, respectively.

The step si −ai,µi,ti−−−−→ri si+1 denotes that after residing ti time units in si, the
MRA has moved via action ai and probability distribution µi to si+1 obtaining
ri action reward. We use prefix(π, t) to denote the prefix of path π up to and

including time t, formally prefix(π, t) = s0 −a1,µ1,t1−−−−−→r1 . . . −
ai,µi,ti−−−−→ri si such that

t1+· · ·+ti ≤ t and t1+· · ·+ti+ti+1 > t. We use step(π, i) to denote the transition
si−1 −ai−→ri µi. When π is finite we define |π| = n, last(π) = sn, and for every
path π[i] = si. Further, we denote by πj the path π up to and including state sj .
Let paths∗ and paths denote the set of finite and infinite paths, respectively. We
define the total reward of a finite path π by

reward(π) =

|π|∑
i=1

ρ(π[i− 1]) · ti + ri (1)
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Rewards can be used to model many quantitative aspects of systems, like energy
consumption, memory usage, deployment or maintenance costs, etc. The total
reward of a path (e.g., total amount of energy consumed) is obtained by adding
all rewards along that path, that is, all state rewards multiplied by the sojourn
times of the corresponding states plus all action rewards on the path.

Policies. Policies resolve the nondeterministic choices in an MRA, i.e., make a
choice over the outgoing probabilistic transitions in a state. Given a policy, the
behaviour of an MRA is fully probabilistic. Formally, a policy, ranged over by D,
is a measurable function such that D : paths∗ → Distr(T ) and D(π) chooses
only from transitions that emanate from last(π). We denote by GM (generic
measurable) the most general class of such policies which are measurable; for
more details on measurability see [25]. Policies are classified based on the level
of information they used to resolve nondeterminism. A stationary deterministic
policy is a mapping D : S → T such that D(s) chooses only from transitions
that emanate from s; such policies always take the same transition in a state
s. A time-dependent policy may decide on the basis of the states visited so far
and their timings. For more details about different classes of policies and their
relations we refer to [26]. Given a policy D and an initial state s, a measurable
set of paths is equipped with the probability measure Prs,D.

2.3 Strong bisimulation

We define a notion of strong bisimulation for MRAs. As for LTSs, PAs, IMCs
and MAs, it equates systems the are equivalent in the sense that every step of
one system can be mimicked by the other, and vice versa.

Definition 5 (Strong bisimulation). Given an MRA M = 〈S, s0, A, T, ρ〉,
an equivalence relation R ⊆ S × S is a strong bisimulation for M if for every
(s, s′) ∈ R and all α ∈ Aχ, µ ∈ Distr(S), r ∈ R≥0, it holds that ρ(s) = ρ(s′) and

s −α→r µ =⇒ ∃µ′ ∈ Distr(S) . s′ −α→r µ
′ ∧ µ ≡R µ′

Two states s, s′ ∈ S are strongly bisimilar (denoted by s ≈ s′) if there exists a
strong bisimulation R forM such that (s, s′) ∈ R. Two MAsM,M′ are strongly
bisimilar (denoted by M ≈ M′) if their initial states are strongly bisimilar in
their disjoint union.

Clearly, when setting all state-based and action-based rewards to 0, MRAs coin-
cide with MAs. Additionally, our definition of strong bisimulation then reduces
to the definition of strong bisimulation for MAs. Since it was already shown
in [14] that strong bisimulation for MAs coincides with the corresponding no-
tions for all subclasses of MAs, this also holds for our definition. Hence, it safely
generalises the existing notions of strong bisimulation.
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3 Quantitative analysis

This section shows how to perform quantitative analyses on MRAs. We will
focus on three common reward measures: (1) The expected cumulative reward
until reaching a set of goal states, (2) the expected cumulative reward until a
given time-bound, and (3) the long-run average reward. Typical examples where
these algorithms can be used are respectively: to minimise the average energy
consumption needed to download and install a medium-size software update; to
minimise the average maintenance cost of a railroad line over the first year of
deployment; and to maximise the yearly revenues of a data center over a long
time horizon. In the following we lift the algorithms from [18] to the realm of
rewards. We focus on maximising the properties. The minimisation problem can
be solved similarly — namely, by replacing max by min and sup by inf below.

3.1 Notation and preprocessing

Throughout this section, we consider a fixed MRA M with state space S and
a set of goal states G ⊆ S. To facilitate the algorithms, we first perform three
preprocessing steps. (1) We consider only closed MRAs, which are not sub-
ject to further interaction. Therefore, we hide all actions (renaming them to τ),
focussing on their induced rewards. (2) Due to the maximal progress assump-
tion, a Markovian transition will never be executed from a state with outgoing
τ -transitions. Hence, we remove such Markovian transitions. Thus, each state
either has one outgoing Markovian transition or only probabilistic outgoing tran-
sitions. We call these states Markovian and probabilistic respectively, and use
MS and PS to denote the sets of Markovian and probabilistic states. (3) To
distinguish the different τ -transitions emerging from a state s ∈ PS, we assume
w.l.o.g. that these are numbered from 1 to ns, where ns is the number of outgo-
ing transitions. We write µτis for the distribution induced by taking τi in state s
and we write rτis for the reward. For Markovian transitions we write Ps and rs,
respectively.

3.2 Goal-bounded expected cumulative reward

We are interested in the minimal and maximal expected cumulative reward until
reaching a set of goal states G ⊆ S. That is, we accumulate the state and
transition rewards until a state in G is reached; if no state in G is reached, we
keep on accumulating rewards.

The random variable VG : paths → R∞≥0 yields the accumulated reward before
first visiting some state in G. For an infinite path π, we define

VG(π) =

{
reward(πj) if π[j] ∈ G ∧ ∀i < j. π[i] 6∈ G
reward(π) if ∀i. π[i] 6∈ G

The maximal expected reward to reach G from s ∈ S is then defined as

eRmax(s,G) = sup
D∈GM

Es,D(VG) = sup
D∈GM

∫
paths

VG(π) Pr
s,D

(dπ) (2)
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where D is an arbitrary policy on M.

To compute eRmax we turn it into a classical Bellman equation: For all goal
states, no more reward is accumulated, so their expected reward is zero. For
Markovian states s 6∈ G, the state reward of s is weighted with the expected
sojourn time in s plus the expected reward accumulated via its successor states
plus the transition reward to them. For a probabilistic state s 6∈ G, we select
the action that maximises the expected cumulative reward. Note that, since the
accumulated reward is only relevant until reaching a state in G, we may turn all
states in G into absorbing Markovian states.

Theorem 1 (Bellman equation) The function eRmax : S → R∞≥0 is the unique
fixed point of the Bellman equation

v(s) =


ρ(s)
E(s) +

∑
s′∈S

Ps(s′) · (v(s′) + rs) if s ∈ MS \G

max
α∈A(s)

∑
s′∈S

µαs (s′) · (v(s′) + rαs ) if s ∈ PS \G

0 if s ∈ G.

A direct consequence of Theorem 1 is that the supremum in (2) is attained by
a stationary deterministic policy. Moreover, this result enables us to use standard
solution techniques such as value iteration and linear programming to compute
eRmax(s,G). Note that by assigning ρ(s) = 1 to all s ∈ MS and setting all other
rewards to 0, we compute the expected time to reach a set of goal states.

3.3 Time-bounded expected cumulative reward

A time-bounded reward is the reward gained until a time bound t is reached and
is denoted by the random variable reward(·, t). For an infinite path π, we first
find the prefix of π up to t and then compute the reward using (1), i. e.

reward(π, t) = reward(prefix(π, t)) (3)

The maximum time-bounded reward then is the maximum expected reward
gained within some interval I = [0, b], starting from some initial state s:

Rmax(s, b) = sup
D∈GM

∫
paths

reward(π, b) Pr
s,D

(dπ) (4)

Similar to time-bounded reachability there is a fixed point characterisation
(FPC) for computing the optimal reward within some interval of time. Here we
focus on the maximum case; the minimum can be extracted similarly.

Lemma 2 (Fixed Point Characterisation) Given a Markov reward automa-
ton M and a time bound b ≥ 0. The maximum expected cumulative reward from
state s ∈ S until time bound b is the least fixed point of higher order operator
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Ω : (S × R≥0 7→ R≥0) 7→ (S × R≥0 7→ R≥0), such that

Ω(F )(s, b) =



(
rs + ρ(s)

E(s)

)
(1− e−E(s)b)

+
∫ b

0
E(s)e−E(s)t

∑
s′∈S Ps(s′)F (s′, b− t) dt s ∈ MS ∧ b 6= 0

maxα∈A(s)

(
rαs +

∑
s′∈S µ

α
s (s′)F (s′, b)

)
s ∈ PS

0 otherwise.

This FPC is a generalisation of that for time-bounded reachability [18, Lemma 1],
taking both action and state rewards into account. The proof goes along the same
lines as that of [25, Theorem 6.1].

Discretisation. Similar to time-bounded reachability, the FPC is not algorith-
mically tractable and needs to be discretised: we have to divide the time horizon
[0, b] into a (generally large) number of equidistant time steps, each of length
0 < δ ≤ b, such that b = kδ for some k ∈ N. First, we express Rmax(s, b) in terms
of its behaviour in the first discretisation step [0, δ). To do so, we partition the
paths from s into the set P1 of paths that make their first Markovian jump in
[0, δ) and the set P2 of paths that do not. We write Rmax(s, b) as the sum of

1. The expected reward obtained in [0, δ) by paths from P1

2. The expected reward obtained in [δ, b] by paths from P1

3. The expected reward obtained in [0, δ) by paths from P2

4. The expected reward obtained in [δ, b] by paths from P2

It turns out to be convenient to combine the first three items, denoted by A(s, b),
since the resulting term resembles the expression in Lemma 2:

A(s, b) = ρ(s)δe−E(s)δ +

∫ δ

0

E(s)e−E(s)t
(
ρ(s)t+ rs +

∑
s′∈S

Ps(s′)Rmax(s′, b− t)
)
dt

=
(
rs +

ρ(s)

E(s)

)(
1− e−E(s)δ

)
+

∫ δ

0

E(s)e−E(s)t
∑
s′∈S

Ps(s′)Rmax(s′, b− t) dt (5)

where the first equality follows directly from the definition of A(s, b) and the
second equality is along the same lines as the proof of Lemma 2. It can easily
be seen that Rmax(s, b) = A(s, b) + e−E(s)δRmax(s, b− δ).

Exact computation of A(s, b) is in general still intractable due to the term
Rmax(s′, b − t). However, if the discretisation constant δ is very small, then,
with high probability, at most one Markovian jump happens in each discretisa-
tion step. Hence, the reward gained by paths having multiple Markovian jumps
within at least one such interval is negligible and can be omitted from the com-
putation, while introducing only a small error. Technically, that means that we
don’t have to remember the remaining time within a discretisation step after a
Markovian jump has happened. We can therefore discretise A(s, b) into Ãδ(s, k)
andRmax(s, b) into R̃max

δ (s, k), just counting the number of discretisation steps k
that are left instead of the actual time bound b:

R̃max
δ (s, k) = Ãδ(s, k) + e−E(s)δR̃max

δ (s, k − 1), s ∈ MS (6)
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where Ãδ(s, k) is defined by

Ãδ(s, k) =
(
rs +

ρ(s)

E(s)

)(
1− e−E(s)δ

)
+

∫ δ

0

E(s)e−E(s)t
∑
s′∈S

Ps(s′)R̃max
δ (s′, k − 1) dt

=
(
rs +

ρ(s)

E(s)
+
∑
s′∈S

Ps(s′)R̃max
δ (s′, k − 1)

)(
1− e−E(s)δ

)
(7)

Note that we used R̃max
δ (s, k−1) instead of bothRmax(s, b−δ) andRmax(s, b−t).

Eq. (6) and (7) help us to establish a tractable discretised version of the
FPC described in Lemma 2 and to formally define the discretised maximum
time-bounded reward afterwards:

Definition 6 (Discretised Maximum Time-Bounded Reward). LetM be
an MRA, b ≥ 0 a time bound and δ > 0 a discretisation step such that b = kδ for
some k ∈ N. The discretised maximum time-bounded cumulative reward, R̃max

δ ,
is defined as the least fixed point of higher order operator Ωδ : (S×N 7→ R≥0) 7→
(S × N 7→ R≥0), such that

Ωδ(F )(s, k) =


(
rs + ρ(s)

E(s)
+
∑

s′∈S Ps(s
′)F (s′, k − 1)

)(
1− e−E(s)δ

)
+e−E(s)δF (s, k − 1) s ∈ MS ∧ k 6= 0

maxα∈A(s)

(
rαs +

∑
s′∈S µ

α
s (s′)F (s′, k)

)
s ∈ PS

0 otherwise.

The reason behind the tractability of R̃max
δ is hidden in Eq. (7). It brings two

simplifications to the computation. First, it implies that R̃max
δ is the conditional

expected reward given that each step carries at most one Markovian transition.
Second, it neglects to compute the reward after the first Markovian jump and
simply assume that it is zero. We have shown the formal specification of the
simplifications in [19, Lemma C1]. With the help of these simplifications, reward
computation becomes tractable but indeed inexact.

The accuracy of R̃max
δ depends on some parameters including the step size

δ. The smaller δ is, the better the quality of discretisation is. It is possible to
quantify the quality of the discretisation. To this end we need first to define
some parameters of MRA. For a given MRAM, assume that λ is the maximum
exit rate of any Markovian state, i. e. λ = maxs∈MSE(s), and ρmax is maximum
state reward of any Markovian state, i. e. ρmax = maxs∈MS ρ(s). Moreover we
define rmax as the maximum action reward that can be gained between two con-
secutive Markovian jumps. The value can be computed via Theorem 1, where
we set Markovian states as the goal states. Given that eRmax(s,MS) has al-
ready been computed, we define r(s) = rs +

∑
s′∈S eR

max(s′,MS) for s ∈ MS,
and r(s) = eRmax(s,MS) otherwise. Finally we have rmax = maxs∈S r(s). Note
that in practice we use a value iteration algorithm to compute rmax. With all
of the parameters known, the following theorem quantifies the quality of the
abstraction.
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Theorem 3 LetM be an MRA, b ≥ 0 be a time bound, δ > 0 be a discretisation
step such that b = kδ for some k ∈ N. Then for all s ∈ S:

R̃max
δ (s, k) ≤ Rmax(s, b) ≤ R̃max

δ (s, k) +
bλ

2
(ρmax + rmaxλ)(1 +

bλ

2
)δ

3.4 Long-run average reward

Next, we are interested in the average cumulative reward induced by a set of
goal states G ⊆ S in the long-run. Hence, all state and action rewards for states
s ∈ S \G are set to 0. We define the random variable LM : paths → R≥0 as the
long-run reward over paths in MRA M. For an infinite path π let

LM(π) = lim
t→∞

1

t
· reward(π, t).

Then, the maximal long-run average reward on M starting in state s ∈ S is:

LRRmax
M (s) = sup

D∈GM
Es,D(LM) = sup

D∈GM

∫
paths

LM(π) Pr
s,D

(dπ). (8)

The computation of the expected long-run reward can be split into three steps:

1. Determine all maximal end components of MRA M;
2. Determine LRRmax

Mi
for each maximal end component Mi;

3. Reduce the computation of LRRmax
M (s) to an SSP problem.

A sub-MRA M is a pair (S′,K) where S′ ∈ S and K is a function that assigns
to each state s ∈ S′ a non-empty set of actions, such that for all α ∈ K(s),
s −α→ µ with µ(s′) > 0 implies s′ ∈ S′. An end component is a sub-MRA whose
underlying graph is strongly connected; it is maximal (a MEC ) w.r.t. K if it is
not contained in any other end component (S′′,K). In this section we focus on the
second step. The first step can be performed by a graph-based algorithm [8,10]
and the third step is as in [18].

A MEC can be seen as a unichain MRA: an MRA that yields a strongly
connected graph structure under any stationary deterministic policy.

Theorem 4 For a unichain MRA M, for each s ∈ S the value of LRRmax
M (s)

equals

LRRmax
M = sup

D

∑
s∈S

(
ρ(s) · LRAD(s) + rD(s)

s · νD(s)
)

where ν is the frequency of passing through a state, defined by

νD(s) =

LRAD(s) · E(s) if s ∈ MS∑
s′∈S

νD(s′) · µD(s′)
s′ (s) if s ∈ PS

and LRAD(s) is the long-run average time spent in state s under stationary
deterministic policy D.
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Thus, the frequency of passing through a Markovian state equals the long-
run average time spent in s times the exit rate, and for a probabilistic state it is
the accumulation of the frequencies of the incoming transitions. Hence, the long-
run reward gathered by a state s is defined by the state reward weighted with
the average time spent in s and the action reward weighted by the frequency of
passing through the state. Since in a unichain MRAM, for any two states s, s′,
LRRmax

M (s) and LRRmax
M (s′) coincides, we omit the starting state and just write

LRRmax
M . Note that probabilistic states are left immediately, so LRAD(s) = 0 if

s ∈ PS. Further, by assigning ρ(s) = 1 to all s ∈ MS ∩ G and setting all other
rewards to 0, we compute the long-run average time spent in a set of goal states.

Theorem 5 The long-run average reward of a unichain MRA coincides with
the limit of the time-bounded expected cumulative reward, such that LRRD(s) =
lim
t→∞

1
tR

D(s, t).

For the equation from Theorem 4 it would be too expensive to compute for all
possible policies and for each state the long-run average time as well as the fre-
quency of passing through a state and weigh those with the associated rewards.
Instead, we compute LRRmax

M by solving a system of linear inequations following
the concepts of [10]. Given a unichain MRAM, let k denote the optimal average
reward accumulated in the long-run and executing the optimal policy. Then, for
all s ∈ S there is a function h(s) that describes a differential cost per visit to
state s, such that a system of inequations can be constructed as follows:

Minimise k subject to:
h(si) = ρ(si)

E(si)
− k

E(si)
+
∑
sj∈S

Psi(sj) · h(sj) if si ∈ MS

h(si) ≥ rαsi +
∑
sj∈S

µαsi(sj) · h(sj) if si ∈ PS ∧ ∀α ∈ A(si)
(9)

where the state and action reward of Markovian states are combined as ρ(si) =
ρ(si) + (rsi · E(si)). Standard linear programming algorithms, e.g., the simplex
method [35], can be applied to solve the above system of linear equations.

To obtain the long-run average reward in an arbitrary MRA, we have to
weigh the obtained long-run rewards in each maximal end component with the
probability to reach those from s. This is equivalent to the third step in the
long-run average computation of [18]. Further, for the discrete time setting [7]
considers multiple long-run average objectives.

4 MAPA with rewards

The Markov Automata Process Algebra (MAPA) language allows MAs to be
generated in an efficient and effective manner [31]. It is based on µCRL [16], al-
lowing the standard process-algebraic constructs such as nondeterministic choice
and action prefix to be used in a data-rich context: processes are equipped with a
set of variables over user-definable data types, and actions can be parameterised
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based on the values of these variables. Additionally, conditions can be used to
restrict behaviour, and nondeterministic choices over data types are possible.
MAPA adds two operators to µCRL: a probabilistic choice over data types and
a Markovian delay (both possibly depending on data parameters).

We extended MAPA by accompanying it with rewards. Due to the action-
based approach of process algebra, there is a clear separation between the action-
based and state-based rewards. Action-based rewards are just added as decora-
tions to the actions in the process-algebraic specification: we use a[r]

∑
• x:D f : p

to denote an action a having reward r, continuing as process p (where the vari-
able x gets a value from its domain D based on a probabilistic expression f).
We refer to [31] for a detailed exposition of the syntax and semantics of MAPA;
this is trivially generalised to incorporate the action-based rewards.

State-based rewards are dealt with separately. They can be assigned to con-
ditions; each state that fulfills a reward’s condition is then assigned that reward.
If a state satisfies multiple conditions, the rewards are accumulated.

4.1 MaMa extensions

Since realistic systems often consist of a very large number of states, we do not
want to construct their MRA models manually. Rather, we prefer to specify them
as the parallel composition of multiple components. This approach was applied
earlier to generate MAs, using a tool called SCOOP [30,18,31]. It generates
MAs from MAPA specifications, applying several reduction techniques in the
process. The underlying philosophy is to already reduce on the specification, not
having to first generate a large model before being able to minimise. The parallel
composition of MRAs is described in the technical report [19] and is equivalent
to [11] for the probabilistic transitions.

We extended SCOOP to parse action-based and state-based rewards. Action-
based rewards are stored as part of the transitions, while state-based rewards
are represented internally by self-loops. Additionally, we generalised most of
its reduction techniques to take into account the new rewards. The following
reduction techniques are now also applicable to MRAs:

Dead variable reduction. This technique resets variables if their value is not
needed anymore until they are overwritten. Instead of only checking whether
a variable is used in conditions or actions, we generalised this technique to
also check if it is used in reward expressions.

Maximal progress reduction. This technique removes Markovian transitions
from states also having τ -transitions. It can be applied unchanged to MRAs.

Basic reduction techniques. The basic reduction techniques omit variables
that are never changed, omit nondeterministic choices that only have one
option and simplify expressions where possible. These three techniques were
easily generalised by taking the reward expressions into account as well.

Confluence reduction was not yet generalised, as it is based on a much more
complicated notion of bisimulation (that is not yet available for MRAs).
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SCOOP IMCA Results

MAPA spec with Rewards + Property

Goal states

MRA

reduce

GEMMA
Property

MAPA-spec

GSPN + Property

Fig. 1. Analysing Markov Reward Automata using the MaMa tool chain.

SCOOP takes both the action-based and state-based rewards into account
when generating an input file for the IMCA toolset. This toolset implements
several algorithms for computing reward-based properties, as detailed before.
The connection of the tool-chain is depicted in Figure 1.

5 Case studies

To assess the performance of the algorithms and implementation, we provide
two case studies: A server polling system based on [29], and a fault-tolerant
workstation cluster based on [22]. Rewards were added to both examples. The
experiments were conducted on a 2.2 GHz Intelr CoreTM i7-2670QM processor
with 8 GB RAM, running Linux.

Polling system. Figure 2 shows the MAPA specification of the polling system. It
consists of two stations, each providing a job queue, and one server. When the
server polls a job from a station, there is a 10% chance that it will erroneously
remain in the queue. An impulse reward of 0.1 is given each time a server takes
a job, and a reward of 0.01 per time unit is given for each job in the queue. The
rewards are meant to be interpreted as costs in this example, for having a job
processed and for taking up server memory, respectively.

Tables 1 and 3 show the results obtained by the MaMa tool-chain when
analysing for different queue sizes Q and different numbers of job types N . The

constant queueSize = Q,nrOfJobTypes = N

type Stations = {1, 2}, Jobs = {1, . . . ,nrOfJobTypes}

Station(i : Stations, q : Queue, size : {0..queueSize})
= size < queueSize⇒ (2i+ 1) ·

∑
j:Jobs

arrive(j) · Station(i, enqueue(q, j), size+ 1)

+ size > 0 ⇒ deliver(i, head(q))
∑
•

k∈{1,9}

k
10

: k = 1⇒ Station(i, q, size)

+ k = 9⇒ Station(i, tail(q), size− 1)

Server =
∑

n:Stations

∑
j:Jobs

poll(n, j)[0.1] · (2 ∗ j) · finish(j) · Server

γ(poll, deliver) = copy // actions poll and deliver synchronise and yield action copy

System = τ{copy,arrive,finish}(∂{poll,deliver}(Station(1, empty, 0) ||Station(2, empty, 0) ||Server))

state reward true→ size1 ∗ 0.01 + size2 ∗ 0.01

Fig. 2. MAPA specification of a nondeterministic polling system.
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Time-bounded reward
Q N Tlim min T (min) max T (max)

2 3 1 0.626 0.46 0.814 0.46
2 3 2 0.914 1.64 1.389 1.66
2 3 10 1.005 161.73 2.189 166.59

3 3 1 0.681 4.90 0.893 4.75
3 3 2 1.121 16.69 1.754 17.11
3 3 10 1.314 1653 4.425 1687

Table 1. Time-bounded rewards for
the polling system (T in seconds).

Time-bounded reward
N Q Tlim min T (min) max T (max)

4 3 10 0.0126 5.47 0.0126 5.53
4 3 20 0.0267 38.58 0.0267 38.98
4 3 50 0.0701 579.66 0.0701 576.13
4 3 100 0.143 4607 0.143 4540

4 5 10 0.0114 4.17 0.0114 4.23
4 5 20 0.0232 28.54 0.0232 28.75
4 5 50 0.0584 444.39 0.0584 442.63
4 5 100 0.1154 3520.18 0.1154 3521.70

Table 2. Time-bounded rewards for the
workstation cluster (T in seconds).

goal states for the expected reward are those when both queues are full. The
error-bound for the time-bounded reward analysis was set to 0.1.

The tables show that the minimal reward does not depend on the number
of job types, while the maximal reward does. The long-run reward computation
is, for this example, considerably slower than the expected reward, and both
increase more than linear with the number of states. The time-bounded reward is
more affected by the time bound than the number of states, and the computation
time does not significantly differ between the maximal and minimal queries.

Workstation cluster. The second case study is based on a fault-tolerant work-
station cluster, described as a GSPN in [25]. Using the GEMMA [2] tool, the
GSPN was converted into a MAPA specification.

The workstation cluster consists of two groups of N workstations, each group
connected by one switch. The two groups are connected to each other by a
backbone. Workstations, switches and the backbone experience exponentially
distributed failures, and can be repaired one at a time. If multiple components
are eligible for repair at the same time, the choice is nondeterministic. The overall
cluster is considered operational if at least Q workstations are operational and
connected to each other. Rewards have been added to the system to simulate the
costs of repairs and downtime. Repairing a workstation has cost 0.3, a switch
costs 0.1, and the backbone costs 1 to repair. If fewer than Q workstations are
operational and connected, a cost of 1 per unit time is incurred.

Tables 2 and 4 show the analysis results for this example. The goal states for
the expected reward are the states where not enough operational workstations
are connected. The error bound for the time-bounded reward analysis was 0.1.
For this example, the long-run rewards are quicker to compute than the expected
rewards. The long-run rewards do not vary much with the scheduler, since mul-
tiple simultaneous failures are rare in this system. This also explains the large
expected rewards when Q is low: many repairs will occur before the cluster fails.
The time-bounded rewards also show almost no dependence on the scheduler.
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Long-run reward Expected reward
Q N |S| |G| min T (min) max T (max) min T (min) max T (max)

2 3 1159 405 0.731 0.61 1.048 0.43 0.735 0.28 2.110 0.43
2 4 3488 1536 0.731 3.76 1.119 2.21 0.735 0.93 3.227 2.01
3 3 11122 3645 0.750 95.60 1.107 19.14 1.034 3.14 4.752 8.14
3 4 57632 24576 0.750 5154.6 1.198 705.8 1.034 31.80 8.878 95.87
4 2 5706 1024 0.769 38.03 0.968 5.73 1.330 3.12 4.199 3.12
4 3 102247 32805 Timeout(2h) 1.330 63.24 9.654 192.18

Table 3. Long-run and expected rewards for the polling system (T in seconds).

Long-run reward Expected reward
N Q |S| |G| min T (min) max T (max) min T (min) max T (max)

4 3 1439 1008 0.00145 0.49 0.00145 0.60 2717 158.5 2718 138.2
4 5 1439 621 0.00501 0.45 0.00505 0.61 1.714 0.56 1.714 0.59
4 8 1439 1438 0.00701 0.48 0.00705 0.64 0 0.50 0 0.50

8 6 4876 3584 0.00145 2.18 0.00145 3.71 2896 783.7 2896 786.6
8 8 4876 4415 0.00146 1.93 0.00147 3.34 285.5 57.13 285.5 54.33
8 10 4883 4783 0.00501 1.92 0.00505 3.36 1.714 2.31 1.714 2.33
8 16 4895 4894 0.00701 2.09 0.00705 3.89 0 2.43 0 2.19

Table 4. Long-run and expected rewards for the workstation cluster (T in seconds).

6 Conclusions and future work

We introduced the Markov Reward Automaton (MRA), an extension of the
Markov Automaton (MA) featuring both state-based and action-based rewards
(or, equivalently, costs). We defined strong bisimulation for MRAs, and validated
it by stating that our notion coincides with the traditional notions of strong
bisimulation for MAs. We generalised the MAPA language to efficiently model
MRAs by process-algabraic specifications, and extended the SCOOP tool to au-
tomatically generate MRAs from these specifications. Furthermore, we presented
three algorithms, for computing the expected reward until reaching a set of goal
states, for computing the expected reward until reaching a time-bound, and for
computing the long-run average reward while visiting a set of states. Our mod-
elling framework and algorithms allow for a wide variety of systems—featuring
nondeterminism, discrete probabilistic choice, continuous stochastic timing and
action-based and state-based rewards—to be efficiently modelled, generated and
analysed.

Future work will focus on developing weak notions of bisimulation for MRAs,
possibly allowing the generalisation of confluence reduction. For quantitative
analysis, future work will focus on considering negative rewards, optimisations
with respect to time and reward-bounded reachability properties, as well as the
handling of several rewards as multi-optimisation problems.
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