June 3,2019 8:35 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

FFORT: A benchmark suite for fault tree analysis

Enno Ruijters!, Carlos E. Budde!, Muhammad Chenariyan Nakhaee?, Mariélle Stoelinga''3,
Doina Bucur?, Djoerd Hiemstra?, and Stefano Schivo*

L Formal Methods and Tools, University of Twente, The Netherlands.

E-mail: {ej.j.ruijters, c.e.budde, m.i.a.stoelinga} @utwente.nl

2Data Science, University of Twente, The Netherlands. E-mail: {m.cnakhaee, d.bucur, d.hiemstra} @utwente.nl
3Saftware Science, Radboud University Nijmegen, The Netherlands.

4Faculty of Management, Science & Technology, Open University, The Netherlands.

E-mail: stefano.schivo@ou.nl

This paper presents FFORT (the Fault tree FOResT): A large, diverse, extendable, and open benchmark suite
consisting of fault tree models, together with relevant metadata.

Fault trees are a common formalism in reliability engineering, and the FFORT benchmark brings together a
large and representative suite of fault tree models. The benchmark provides each fault tree model in standard
Galileo format, together with references to its origin, and a textual and/or graphical description of the tree. This
includes quantitative information such as failure rates, and the results of quantitative analyses of standard reliability
metrics, such as the system reliability, availability and mean time to failure. Thus, the FFORT benchmark provides:
(1) Examples of how fault trees are used in various domains; (2) A large class of tree models to evaluate fault tree
methods and tools; (3) Results of analyses to compare newly developed methods with the benchmark results.

Currently, the benchmark suite contains 202 fault tree models of great diversity in terms of size, type, and
application domain. The benchmark offers statistics on several relevant model features, indicating e.g. how often
such features occur in the benchmark, as well as search facilities for fault tree models with the desired features. In
addition to the trees already collected, the website provides a user-friendly submission page, allowing the general
public to contribute with more fault trees and/or analysis results with new methods. Thereby, we aim to provide an

open-access, representative collection of fault trees at the state of the art in modeling and analysis.

Keywords: Fault Tree Analysis, Reliability Engineering, Case Studies, Quantitative Risk Analysis

1. Introduction

Fault trees (FTs) are a widely-used formalism
for safety and reliability analysis (Ericson| (1999);
Stamatelatos et al.| (2002); Ruijters and Stoelinga.
(2015)). An FT is a graphical representation of
the possible failure modes of a system, i.e. the
distinct processes by which determined system
functionality failures can be observed (Rausand
and Hgyland| (2004)), broken down into interme-
diate failures and their interactions. From quan-
titative information about elementary failure be-
havior (like component failure rates), fault tree
analysis provides quantitative results on metrics
such as time-dependent system failure probability
and average system downtime.

Fault trees are popular as a clear graphical for-
malism to analyze RAMS—reliability, availabil-
ity, maintainability, and safety—metrics of com-
plex systems. Many extensions and analysis meth-
ods and tools have been developed from the orig-
inal FT concept (Ruijters and Stoelingal (2015)).
However, a systematic way of comparing all these
methods is lacking: Many published papers use

their own examples and case studies to evalu-
ate the merits of their new techniques. From a
methodological point of view this practice has sig-
nificant disadvantages: (1) It is possible to present
case studies that are biased in favor of the newly
introduced methods and tools; (2) When papers
use their own examples, an objective comparison
of different methods becomes difficult; (3) Due
to lack of sources, the number of examples and
case studies used in publications is often relatively
small.

This paper makes an important step towards a
more systematic comparison in fault tree analysis
research, namely by providing a large, ope
quantitative, searchable, and extensible bench-
mark suite for fault tree models. In this sense,
a major feature of FFORT is the diversity of its
content, where FTs have different size (number of
basic events and gates), type (static vs. dynamic,

*Licensed under the Creative Commons Attribution Li-
cense (https://creativecommons.org/
licenses/by/4.0/)

Proceedings of the 29th European Safety and Reliability Conference.

Edited by Michael Beer and Enrico Zio

Copyright © 2019 by ESREL2019 Organizers. Published by Research Publishing, Singapore
ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0_main 1

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

2 Ruijters, Budde, Nakhaee, Stoelinga, Bucur, Hiemstra, Schivo

repairable or not), failure behavior (diverse gates
and probability distributions in basic events), and
RAMS metrics computed. [lable 1| offers an
overview of this.

Furthermore, reproducibility has gained re-
newed interest in computer science, particularly
in research on formal methods (Schlick et al.
(2018)). According to the |ACM (2018)), such
reproducibility should be tested by a different
team using a different experimental setup from
the original research. So far, there has been no
systematic effort to reproduce published results in
fault tree analysis. Thus and in addition to the con-
tributions mentioned above, we reproduce parts
of previously published papers by analyzing their
fault trees in a systematic way, thereby validating
the published results.

To these aims, the benchmark suite provides for
each FT it contains:

e A complete textual representation in the stan-
dard Galileo format, following the syntactic
guidelines detailed in

e A summarized description and pictorial illustra-
tion (taken from the authors when available) to
facilitate understanding.

e Quantitative information such as rates and fail-
ure probabilities of basic events.

e Values of RAMS metrics, namely previously-
published values if available, plus newly com-
puted values for reference purposes.

The FTs—and their metadata—that FFORT
thus provides come from an unbiased collection
of case studies gathered from scientific literature,
ranging from the classic NASA fault tree hand-
book (Stamatelatos et al.| (2002)) to modern pa-
pers on advanced analysis techniques. These in-
clude several industrial cases modelling software
or physical assets of companies, such as PCBAs,
vehicle guidance, railways, ship mooring, and
tank storage. Search and filter facilities are pro-
vided to select FTs with specific characteristics;
an essential feature in the benchmark as per the
great diversity of FTs offered.

Thus, FFORT makes significant steps towards:

(1) A systematic and comprehensive way of com-
paring the capabilities and performance of
FT analysis tools.

(2) Validation of new analysis techniques by
comparing outcomes to reference results al-
ready published.

(3) Confirmation of the reproducibility of pub-
lished results. Indeed, we have already identi-
fied one unreproducible result.

(4) History-tracking of case studies, as variations
of FTs are created in different publications.

(5) Examination of how often more complex mod-
eling features are used, e.g. dynamic gates and
maintenance representation.

In addition to the trees already collected, we
provide a user-friendly submission page, allowing
modelers to upload more examples of FT's or anal-
ysis results with new methods. Thereby, we aim to
continue to provide an open-access, representative
collection of fault trees at the state of the art in
modeling and analysis.

The structure of this paper is as follows: [Sect.
provides a brief overview of fault trees. [Sect.
describes the data and metadata that is stored in
FFORT. [Sect. 4| explains the methodology used to
collect the FTs currently in FFORT, while [Sect. 5
provides some statistics about these FTs. [Sect. 6
shows the user interface to access FFORT, before
ending with a conclusion and discussion in[Sect. 7}

2. Fault Trees

Fault tree analysis is an industry-standard, widely
used formalism to graphically model systems and
analyse them for reliability and safety (IEC61025
(2006)). Entities like NASA, NRC, ProRail, Boe-
ing, etc. use fault tree analysis to ensure com-
pliance to both national and international safety
regulations. FTs model the interactions of com-
ponent failures that may lead to (sub-) system
failures, thereby supporting the analysis of a wide
range of qualitative and quantitative dependability
analyses.

A fault tree is a directed acyclic graph, in
which the leaves are called basic events and the
remaining nodes are called gates. Basic events
specify elementary failure causes (e.g., failures
of individual components, external causes), while
the gates specify how these failures combine to
cause system level failure. The root of the FT
is called the top level event and denotes system
failure.

Fig. [T] shows an example of a fault tree. The
top level event is called “System.” Its symbol (())
denotes an OR-gate, representing that a failure of
either child causes a system failure. Its children
are the basic event “HCR” and the AND-Gate
“Batteries.” The latter denotes that the battery
subsystem requires both batteries B; and B, to fail
for the subsystem (and thus the entire system) to
fail.

Figure 1. Simple fault tree

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

FFORT: A benchmark suite for fault tree analysis 3

Standard (or static) FTs support only boolean
gates (i.e., AND, OR, and k-out-of-N). Various
extensions have been developed supporting more
complex combinations. The most prominent is the
dynamic fault tree (DFT) by |Dugan et al.| (1990)
which adds PAND (Priority-AND) gates impos-
ing temporal requirements, SPARE gates used to
denote spare parts, FDEP (function dependency)
gates denoting subtrees that cause other subtrees
to fail, and SEQ (sequence-enforcer) gates that
denote that certain failures can only occur in a par-
ticular order. A more recent extension by [Ruijters
et al.| (2016) is the fault maintenance tree, which
adds inspection and repair modules to specify
complex maintenance and repair policies.

Fault trees can be analyzed to obtain various
metrics relevant to reliability engineering. Qual-
itative analysis provides information such as cut
sets: Sets of component that, if failed, cause the
system to fail. If basic events are decorated with
failures probabilities or rates, quantitative metrics
can be calculated. Which properties are applicable
depends on the provided information: Given fail-
ure probabilities, the system reliability (probabil-
ity of no system failure) can be computed. If fail-
ure rates over time are available, one can compute
timed reliability (probability of no system failure
occurring before a given mission time) or mean
time to failure (MTTF). When repair information
is available as well, the system availability (av-
erage proportion of time that the system is not
failed when operating under standard conditions)
can also be computed.

3. The FFORT Benchmark Suite

In addition to storing the trees themselves, FFORT
also stores metadata to explain each FT and its
origins. Since we collect FTs from published
literature, FFORT does not need to store the full
details of each tree, rather referring to the original
publication for full details. Nonetheless, we try to
provide sufficient context for each tree to be rea-
sonably understandable without reading the entire
paper.

FFORT stores all FT's as variants of a particular
family, with each variant possibly having some
associated set of results. We have identified two
patterns to the variants: (1) Different FT's model-
ing the same system, e.g. to suit different analysis
tools; (2) FTs modeling similar systems, e.g. to
explore the effects of adding certain redundancies.
Many families contain only a single variant, as
that is the only published FT.

The FTs themselves (i.e. the data) are stored in
the Galileo format (as described by Sullivan and
Dugan| (1998)); |Sullivan et al.| (1999)), while the
associated metadata 1s stored in JSON. We store
the following metadata—required fields indicated
in bold—for each family:

e Name and short description of the FT.

e Reference to the publication first describing
the FT (title, author names, publication year,
and DOI or website link if available online).

e Name and e-mail address of the person who
submitted the FT to FFORT.

e Date in which the FT was added to FFORT.

e Additional references providing further infor-
mation.

In turn, for each variant in a family we store the
following metadata:

e Name and description if the family has mul-
tiple variants.

e [mage of the FT, when practical due to size,
etc.

e Reference introducing the variant, if different
from the family reference.

e Results if available, each one including:

» Metric calculated, e.g. reliability for
some time horizon ¢, availability, etc.

» Reference to the publication containing
the result (omitted only for reference
results computed for FFORT).

» Value of the calculated result.

» Tool name used to calculate the result,
or “manual computation” if the result
comes from analytical calculations.

In addition, we automatically extract quantita-
tive information about the fault trees data, for sta-
tistical and search/filtering purposes. In particular,
we calculate for each FT:

e The number of BEs and their attributes.
e The number of gates of each type.
e Whether the FT supports any type of repairs.

Furthermore, we provide reference results of
standard RAMS metrics for each FT in the col-
lection. We apply two tools to every FT for this:
Storm-DFT by Volk et al.| (2018) and DFTCalc
by |Arnold et al| (2013), the latter with its ‘ex-
act’ backend if possible, otherwise with its IMCA
backend. For non-repairable FTs we calculate
mean time to failure and reliability; for repairable
FTs we calculate availability in addition. In the
case of reliability, if a particular time point was
used in previous results, we calculate reliability
for that time as well; otherwise we compute re-
liability for time ¢ = 1. Some FTs could not
be analyzed using one or both of these tools due
to restrictions on the supported FT features—
e.g., Storm-DFT cannot process repairable FTs—
or computational resource limits.

shows part of the front page of the
FFORT website with the ‘Cardiac Assist System’
and the results of one of its variants open. The
first line of the table shows the combined metadata
about the variants (number of BEs, types of gates
etc.). Below this is the overall description and
reference, where an image is also displayed if one

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

main

4 Ruijters, Budde, Nakhaee, Stoelinga, Bucur, Hiemstra, Schivo
Search
Show fault trees with name... of type: |Any v | |with description containing...

FDEP
MTTF

OR PAND
Reliability

SPARE
Availability

With at least one of these gate types: VOT AND

With at least one of these result types:

Published by author... After v |year.. and added to FFORT | After ¥

M

SEQ

dd-mm-3j3jj

NameaA

BEs # Gates _Distr.

Gate Types Repair _Model Results

Cardiac Assist System 9-10 8-10 Exp

AND, FDEP, OR, PAND, SPARE No

[hide variations] MTTF, Reliability

Submitted by: Enno Ruijters, Added on 2018-07-02.

Model of a hypothetical cardiac assist system with redundant CPUs, motors, and pumps. A central switch and system
supervisor can disable the entire unit.

< From: H. Boudali and J. B. Dugan: A discrete-time Bayesian network reliability modeling and ana nework, 2005 &
DFTCalc variant 10 10 Exp AND, FDEP, OR, PAND, SPARE No MTTF, Reliability
HCAS 9 8 Exp AND, FDEP, OR, PAND, SPARE No MTTF, Reliability
Metric Value Tool Source
MTTF 169841.988241899[0309; 1766] DFTCalc (Exact)
MTTF 169841.9882 Storm-DFT
Reliability @ t = 700000 0.363752 DBN C
Reliability @ t = 700000 0.3635008473765[3975; 4310] DFTCalc (Exact)
Reliability @ t = 700000 0.363501 Galileo C
Reliability @ t = 700000 0.3635008474 Storm-DFT

Figure 2. Excerpt from the web interface of FFORT

is available. The lines for the variants show meta-
data about the individual FTs as well as the link to
the model file. The results show that this variant
has two published results (with DOIs linked in the
‘Source’ column) and four unpublished reference
results which closely match the published values.

4. Collection Methodology

To populate FFORT, we have applied specific cri-
teria in our literary survey, to ensure a consistent
and homogeneous representation of the data in
line with the required features described in[Sect. 3]

4.1. Validation rules

When considering fault tree T (family or vari-
ant) for inclusion in the benchmark, the following
conditions were checked:

(1) T must have been introduced in a reference-
able publication, namely a scientific article
published in a journal or conference or work-
shop proceedings, or a published book.

(2) Nontrivial size; specifically FT must have at

east 10 nodes, unless it is part of a family

where there are other trees that satisfy this
condition.

Structural unambiguity, i.e. there must be ei-

ther a complete graphical representation or a

clear description (or a combination of these)

describing JJ entirely.

(4) Analyzability by public software, i.e. there
must exist some publicly available tool that
can compute the metrics for F7J that appear
in the publication it was taken fronfl] No-
tice this does not necessarily rule out trees

3)

TWe target theoretical analyzability, disregarding practical
hardships like tree size or computation time.

appearing in publications where results were
computed analytically (“by hand”), as long as
the corresponding Galileo encoding of FJ can
theoretically be analyzed by existing tools.
FT must contain quantitative information that
admits the computation of some standard
RAMS metric, e.g. availability, reliability,
(untimed) failure probability, etc.

&)

rules out fault trees which, due to the
available published information, are susceptible
to qualitative analyses alone, for instance those
studied by |[Zhang et al.| (2018). This is motivated
by the focus of FFORT on quantitative fault tree
analysis, oriented to the development and im-
provement of software tools that target this goal.

4.2. Naming and structural conventions

The data content of the fault trees in FFORT is
stored as plain text files, written in the standard
Galileo format{ﬂ The file extension is dft and,
to facilitate parsing by software tools, we use the
following conventions for the nodes of the tree:

e Names, be these of basic events or gates, are
enclosed in double quotes “like this.”

e The top level event (i.e. the root node of the
tree) is named “System”.

e The names of all other nodes follow the pub-
lication from which the tree was extracted:

» if the node name in the publication is an
abbreviation (e.g. HCR_2), the string is
used verbatim enclosed in double quotes
as per the first item (e.g. “"HCR_2");

if a long name is used instead, possibly
including spaces (e.g. higher cabin

IDescribed at https:
//dftbenchmarks.utwente.nl/galileo.html

https://dftbenchmarks.utwente.nl/galileo.html
https://dftbenchmarks.utwente.nl/galileo.html

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

FFORT: A benchmark suite for fault tree analysis 5

relay 2), spaces are stripped and the
string is written in camel case (e.g.
“higherCabinRelay2”).

o After the tree root on the first line, each node
of the tree appears as a single line in the file,
describing it according to the Galileo format.

e The order of declaration of the nodes in
the file follows a preorder (i.e. root-first or-
der) of the tree hierarchy; that is, if gates
Gy, Go, ..., Gy are children of gate G, then the
line declaring G in the file appears before the
lines declaring {G; } ¥ ;.

e Basic events, i.e. the fault tree leaves, are de-
clared in the file after all gates, and in its left-
to-right order of definition; e.g. for the (sub-)
tree PAND (BE1, BE2) the line declaring the
PAND gate appears first in the file, then the
line declaring the basic event BE1 is declared
on a lower (not necessarily consecutive) line,
and immediately below it is the line declaring
the basic event BE2.

To provide a full concrete example, the fault
tree in is translated into the content of the
tree.dft file shown in[Fig. 3] where the failure
rates of the basic events (i.e. the values assigned to
the lambda constants) are assumed given in the
text of the corresponding publication.

toplevel “System”;

“System” or “HCR” “batteries”;
“batteries” and “B1” “B2";
“HCR” lambda=2.8e-5;

“B1” lambda=1.13e-6;

“B2” lambda=1.13e-6;

Figure 3. Galileo description of the FT in[Fig. 1]

5. Statistics

FFORT is a diverse benchmark suite with fault
trees that differ in size (i.e. the number of nodes
in the tree), type (static vs. dynamic, repairable
or not, with maintenance support or not), fail-
ure behaviour (diverse failure probability distribu-
tions for the basic events, and several gate types),
and metrics computed (untimed failure probabil-
ity, reliability for certain time horizon, availability,
mean time to failure). offers an overview
of this diversity.

At the time of publication, FFORT contains 202
FTs from a total of 24 families. There is consid-
erable variation in the number of FTs per family,
with the largest family containing 68 FTs, and
many ‘families’ having only one FT. The families
containing many variants are mainly those that
were used as benchmarks for analysis tools (where
variants of different sizes demonstrate scalability

Table 1. Properties of some FTs currently in FFORT: Distri-
bution is either ‘D’ for discrete probabilities or ‘E’ for failure
rates describing exponential distributions; Results are ‘P’ for
published, ‘R’ for reference, ‘PR’ for both, ‘X’ for neither, or
blank for not applicable to the model type.

* .} = = >
| SIE|Z| £ £|5
= ® = =R ® = =
) =] 2 =3 g g | =
. = = = £ = 2.
Family o i] =3 & =
8 || 8 g
acronynE 2 =
FTPP 16 v |V E P R R
HECS 28 v |V E PR P R
RCabin 9 v E R PR | R
TFS 1 v E X X X
CAS 2 v E PR R
RCross 68 v E R R
CSDE 1 D R
SMS 12 D PR
ST 3 D P
WDQ 1 D X

of the tool). Some of the main properties of the
FTs currently in FFORT are shown in

5.1. FT elements

We observe a balance between discrete-time and
continuous-time FTs, with 16 families specifying
basic events’ failure rates, and the remaining 8
specifying simple failure probabilities. We did not
encounter any FTs that mixed these types.

In terms of size, the FTs vary from 6 to 253
basic events (median 22), and 4 to 161 gates
(median 14). We note that the largest FTs are
contained in families that also have more modest
sizes, with the smallest FTs per family ranging
from 6 to 54 BEs (median 10) and 4 to 50 gates
(median 9).

With respect to the FT types, we have a mix of
static, dynamic, and maintenance FTs, as shown
in For the purpose of this classification,
we consider each FT is a member of the most
restrictive class it fits in. So for instance, a tree
containing only static gates is considered a static
fault tree, even though it also meets the formal
definition of a dynamic fault tree.

The gate types used are shown in As
one would expect, the AND- and OR-gates are by
far the most common, with relatively even num-
bers for the more complex types. The sequence-
enforcer gate and inspection module are the least
used, which is understandable given their poor
support by many analysis tools.

The average number of each type of gate per
FT can be found in The OR-gate is by
far the most common, which was expected as this

$Capitals of the tree’s Name, see

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book

main

6 Ruijters, Budde, Nakhaee, Stoelinga, Bucur, Hiemstra, Schivo

Static (9)

Dynamic (11)

0 5 10 15 20

(a) Per family: 4 maintenance, 11 dynamic (+2 also mainte-
nance gates), 9 static (+11 also dynamic, +4 also maintenance).

L L L

Static (22)

T —

0 50 101 150 200

(b) Per variant: 28 maintenance, 152 dynamic (+18 also mainte-

nance gates), 22 static (+152 also dynamic, +28 also maint.).

Figure 4. Trees containing gates of type: static (green,
top), dynamic (blue, middle), and maintenance (red, bottom).
Lighter color indicate families that also contain gates of more
extended types.

is what usually connects different failure modes
(e.g. a general system failure may take place if
functionality A or B are lost, which can be caused
by failure modes F4 or F'p respectively). Next
are the AND-, SPARE-, and PAND-gates, often
connecting failure modes related via redundancy.
The FDEP, voting (VOT), and sequence enforcer
(SEQ) gates occurs more rarely, as many systems
do not include these features. Inspection modules
(IM) occur very infrequently, as most FTs that
include maintenance specify only one policy rep-
resented by an IM.

5.2. Quantitative results

Of the 24 families in FFORT, 16 include at least
one quantitative result. As described in
we provide published results that are taken from
scientific literature (generally the same paper that
describes the FT itself) and reference results com-
puted ourselves for the sake of the benchmark. Of
the 16 FTs with results, 11 contain published re-

OR

24

SEQ (3) I I I I
20% 40% 60% 80%
Figure 5. Number of families containing the gate types

sults, while the remaining five have only reference
results.

Of three FTs that do not have results, one con-
tains a feature not supported by any of the analysis
tools available to us (the Restoration factor), and
the other two are too large for the tools to analyze
them in two hours on our computer:

@_lshows the percentage of FT (families)
for which a particular type of result is available.
An interesting remark is that the published results
contain only metrics on reliability and availability.
The mean time to failure is included as a reference
result for many FTs, but is apparently not pub-
lished in general. We did not compute reference
results for availability, as the only tool available
to us to compute the availability for repairable
FTs (DFTCalc) is the same tool that generated the
published results.

In computing reference results, we have already
identified one published result (by |Arnold et al.
(2013))) that did not match the reference result.
In collaboration with the original authors, we
identified that the published value was erroneous,
caused by a typographical error in the program
invocation.

6. User Interface

The FFORT websitem consists of three web pages:
The main page where (filtered subsets of) FTs
can be viewed and downloaded, the statistics page
where various statistics of the collection can be
found in real-time, and the submission page where
new FTs can be submitted.

In addition to the website, a git repositoqﬁhﬂ
can be downloaded containing all the models wit
their JSON metadata (as well as the source code of
the website). This feature allows e.g. tool authors
to automatically execute their tool on all available
FTs.

6.1. Main page

shows part of the front page of FFORT.

At the bottom of the image, the list of FTs can
be seen. Information about each model can be
seen by clicking its name, which expands the entry
to shows its description, reference, and image if
available (an example description is shown at the
top of For FT families with a single
variant, the Model column contains links to the
Galileo files. For families with multiple variants,
the clickable text [show variations] expands a list

I0ur computers run Linux kernel 4.4.0-138, on Intel®
Xeon® E5520 CPUs with 24 GB of DDR3 RAM @ 1066MHz.

I'The website can be found at
https://dftbenchmarks.utwente.nl/\
TTThe repository can be found at

https://dftbenchmarks.utwente.nl/ffort.git,

https://dftbenchmarks.utwente.nl/
https://dftbenchmarks.utwente.nl/ffort.git

June 3, 2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

FFORT: A benchmark suite for fault tree analysis 7

PAND (1.72)

IM (0.16)

Figure 6. Number of each element type per FT (averaged per family).

showing the variants with links to their Galileo
files.

At the top of the page is the search box. Here,
the user can search for FTs by name, description,
or publication author or year. In addition, the
user can choose to show only FTs of a particular
type (static, dynamic, or maintenance), containing
particular gates, and/or for which a particular type
of result is available. Furthermore, the FTs can be
restricted by the date they were added to FFORT.
In this way, a tool author can, for example, try
their tools on all FTs with certain properties, and
later easily check whether any new FTs were
added with those properties.

6.2. Statistics page

The statistics page of FFORT shows various statis-
tics similar to those reported in[Sect. 5] computed
in real-time over the models present in FFORT.
In addition, the statistics can be calculated over
subsets of the submitted trees using all the filtering
capabilities of the main page as described in the
previous section.

6.3. Submission page

shows a partly filled out submission page.
At the top of the page, the user can see how the
submitted information would appear on the main

22/24

15/16
0/16

| | | J
20% 40% 60% 80%

100%

Figure 7. Percentage of families with given results types (out
of families for which the type is applicable). Reference results
in lighter color at the top of each pair, published results below
it. Reliability at the top (blue), availability in the middle
(green), and MTTF at the bottom (red)

page (except for the information that is automati-
cally calculated from the tree).

The submission page allows multiple variants
to be submitted by adding additional models, and
one or more results can be submitted for each
variant. New variants can be submitted by naming
the model identical to an already-included one,
and new results can be submitted by using an
identical name and omitting the model file.

For expert users, the JSON-formatted meta-
data can be edited manually to perform tasks that
would otherwise be cumbersome (e.g., adding
large numbers of variants by copying and pasting
one variant and making minor adjustments) or un-
supported (e.g., specifying a different submission
date for re-submissions with corrected models).

Completed forms can be submitted automati-
cally to the maintainers of FFORT. After submis-
sion, the maintainers verify that the submitted tree
and metadata are valid (i.e., that the submitted
Galileo file has the correct syntax, DOIs refer
to the correct papers, etc.), generate the model-
derived metadata (i.e., number of gates, etc.), and
add the submission to the main page.

7. Conclusion

This paper has presented FFORT, a compilation
of diverse fault trees for benchmark purposes. We
have collected FTs from the scientific literature,
described them in a uniform input language, and
we make them publicly available together with
metadata about the FTs. We provide the metadata
both on a user-friendly website and in machine-
readable form. We further hope to expand the
FFORT both by collecting further FTs ourselves
and by soliciting contributions from other re-
searchers on fault tree analysis.

Discussion One of the goals of FFORT is to pro-
vide validation for analysis techniques. Already
during the construction of FFORT, the calculation
of reference results identified software bugs in
both tools used for the task (DFTCalc and Storm-
DFT). Furthermore, we identified a case where

June 3,2019 8:35

RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book main

8 Ruijters, Budde, Nakhaee, Stoelinga, Bucur, Hiemstra, Schivo

Namev #BEs _ #Gates Distr.

This is an example model.

2019 ¢
New Submission
Your name: J. Random Author

Your e-mail address: j.rauthor@example.com

Model name: Example model

Image file (optional): Select file

Original paper title:

DOVlink:

Year: 2019

Model

DFT File:

Select file

Gate Types Repair __ Model Results
Example model T.B.D. T.B.D. TB.D. TBD. xamp

< From: J. Random Author, Alice Smith, and Bob Jones: Fault tree analysis: An illustr

Description: This is an example model.

example.svg
Fault tree analysis: An illustrated example
Authors (separate by commas): J. Random Author, Alice Smith, Bob Jones

10.1007/978-1-234-56789-0_4

example.dft

e None available

Figure 8.

published results do not match our reference re-
sult, which was traced to a typographical error
in the tool invocation used for the published re-
sult. We hope that by collecting published re-
sults, FFORT will help authors and developers to
improve their own software tools, and promote
reproducibility of published results.

Acknowledgments

Thanks to Matthias Volk for submitting several
FTs to FFORT. This work was partially funded by
STW project SEQUOIA (15474), KIA KIEM and
BetterBe B.V. grant StepUp (628.010.006), and
EU project SUCCESS (102112).

References

ACM (2018).
Artifact review and badging. https://www.
acm.org/publications/policies/
artifact-review-badging.

Arnold, F., A. Belinfante, F. van der Berg,
D. Guck, and M. Stoelinga (2013). DFTCalc:
A tool for efficient fault tree analysis. In Proc.
32nd Int. Symp. on Comput. Safety, Reliability,
and Security (SAFECOMP), Volume 8153 of
LNCS, pp. 293-301.

Dugan, J. B., S. J. Bavuso, and M. A. Boyd
(1990). Fault trees and sequence dependencies.
In Proc. IEEE Annu. Rel. and Maintainability
Symp., pp. 286-293.

Ericson, C. (1999). Fault Tree Analysis — a his-
tory. Proc. 17th Int. System Safety Conf., 87—
96.

IEC61025 (2006). IEC 61025: Fault tree analysis.

Rausand, M. and A. Hgyland (2004). System
reliability theory: models, statistical methods,
and applications (2 ed.). John Wiley & Sons.

Excerpt from the submission page of FFORT

Ruijters, E., D. Guck, P. Drolenga, and
M. Stoelinga (2016, January). Fault mainte-
nance trees: reliability contered maintenance
via statistical model checking. In Proc. IEEE
Rel. and Maintainability Symp. (RAMS).

Ruijters, E. and M. Stoelinga (2015). Fault tree
analysis: A survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci.
Review 15-16, 29-62.

Schlick, R., M. Felderer, 1. Majzik, R. Nardone,
A. Raschke, C. Snook, and V. Vittorini (2018).
A proposal of an example and experiments
repository to foster industrial adoption of for-
mal methods. In Int. Symp. Leveraging Ap-
plications of Formal Methods, Verification and
Validation (ISoLA), pp. 249-272.

Stamatelatos, M., W. Vesely, J. B. Dugan,
J. Fragola, J. Minarick, and J. Railsback (2002).
Fault Tree Handbook with Aerospace Applica-

tions. Office of safety & mission assurance,
NASA HQ.

Sullivan, K. J. and J. B. Dugan (1998) Galileo
user’s manual design

OVerview. www.cse.msu. edu/ ~cse870/
Materials/FaultTolerant/
manual-galileo.htm. v2.1-alpha.

Sullivan, K. J., J. B. Dugan, and D. Coppit (1999).
The Galileo fault tree analysis tool. In Proc.
29th Int. Symp. on Fault-Tolerant Computing
(FTCS), pp. 232-235.

Volk, M., S. Junges, and J.-P. Katoen (2018). Fast
dynamic fault tree analysis by model checking
techniques. IEEE Trans. Industrial Informat-
ics 14(1), 370-379.

Zhang, Z., X. Liu, and Z. Bian (2018). Analysis
of restricted-speed accidents using Fault Tree
Analysis. In Proc. 2018 ASME/IEEE Joint Rail
Conf.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm

	FFORT: A benchmark suite for fault tree analysis
	Introduction
	Fault Trees
	The FFORT Benchmark Suite
	Collection Methodology
	Validation rules
	Naming and structural conventions

	Statistics
	FT elements
	Quantitative results

	User Interface
	Main page
	Statistics page
	Submission page

	Conclusion
	Discussion

